
Zongjie Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2346956/publications.pdf Version: 2024-02-01

ZONCHE WANC

#	Article	IF	CITATIONS
1	3D bioprinting for engineering complex tissues. Biotechnology Advances, 2016, 34, 422-434.	11.7	1,240
2	Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators. ACS Nano, 2013, 7, 2369-2380.	14.6	789
3	A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication, 2015, 7, 045009.	7.1	466
4	Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials, 2012, 33, 9009-9018.	11.4	221
5	Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications. Stem Cells International, 2016, 2016, 1-19.	2.5	221
6	Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting. ACS Applied Materials & Interfaces, 2018, 10, 26859-26869.	8.0	197
7	Microfluidics-Assisted Fabrication of Gelatin-Silica Core–Shell Microgels for Injectable Tissue Constructs. Biomacromolecules, 2014, 15, 283-290.	5.4	133
8	Nanowire-Based Biosensors: From Growth to Applications. Micromachines, 2018, 9, 679.	2.9	99
9	Comparative study of gelatin methacrylate hydrogels from different sources for biofabrication applications. Biofabrication, 2017, 9, 044101.	7.1	81
10	An ultrafast hydrogel photocrosslinking method for direct laser bioprinting. RSC Advances, 2016, 6, 21099-21104.	3.6	75
11	Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent. Annals of Biomedical Engineering, 2020, 48, 1955-1970.	2.5	62
12	Stereolithography 3D Bioprinting. Methods in Molecular Biology, 2020, 2140, 93-108.	0.9	61
13	Nanowire-Based Sensors for Biological and Medical Applications. IEEE Transactions on Nanobioscience, 2016, 15, 186-199.	3.3	60
14	Three-Dimensional Nanostructured Architectures Enable Efficient Neural Differentiation of Mesenchymal Stem Cells via Mechanotransduction. Nano Letters, 2018, 18, 7188-7193.	9.1	60
15	Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering. Journal of Biomedical Materials Research - Part A, 2022, 110, 708-724.	4.0	55
16	Designing Gelatin Methacryloyl (GelMA)â€Based Bioinks for Visible Light Stereolithographic 3D Biofabrication. Macromolecular Bioscience, 2021, 21, e2000317.	4.1	51
17	Rapid and Inexpensive Fabrication of Multi-Depth Microfluidic Device using High-Resolution LCD Stereolithographic 3D Printing. Journal of Manufacturing and Materials Processing, 2019, 3, 26.	2.2	48
18	An integrated microfluidic flow-focusing platform for on-chip fabrication and filtration of cell-laden microgels. Lab on A Chip, 2019, 19, 1621-1632.	6.0	48

ZONGJIE WANG

#	Article	IF	CITATIONS
19	A Novel, Wellâ€Resolved Direct Laser Bioprinting System for Rapid Cell Encapsulation and Microwell Fabrication. Advanced Healthcare Materials, 2018, 7, e1701249.	7.6	42
20	Rapid Fabrication of Multilayer Microfluidic Devices Using the Liquid Crystal Display-Based Stereolithography 3D Printing System. 3D Printing and Additive Manufacturing, 2017, 4, 156-164.	2.9	40
21	Potentialâ€Responsive Surfaces for Manipulation of Cell Adhesion, Release, and Differentiation. Angewandte Chemie - International Edition, 2019, 58, 14519-14523.	13.8	40
22	Microfluidics-based fabrication of cell-laden microgels. Biomicrofluidics, 2020, 14, 021501.	2.4	40
23	Tracking the expression of therapeutic protein targets in rare cells by antibody-mediated nanoparticle labelling and magnetic sorting. Nature Biomedical Engineering, 2021, 5, 41-52.	22.5	40
24	Programmable Metal/Semiconductor Nanostructures for mRNA-Modulated Molecular Delivery. Nano Letters, 2018, 18, 6222-6228.	9.1	36
25	Sacrificial layer technique for axial force post assay of immature cardiomyocytes. Biomedical Microdevices, 2013, 15, 171-181.	2.8	35
26	Efficient recovery of potent tumour-infiltrating lymphocytes through quantitative immunomagnetic cell sorting. Nature Biomedical Engineering, 2022, 6, 108-117.	22.5	31
27	Visible light-based stereolithography bioprinting of cell-adhesive gelatin hydrogels. , 2017, 2017, 1599-1602.		29
28	Ultrasensitive and rapid quantification of rare tumorigenic stem cells in hPSC-derived cardiomyocyte populations. Science Advances, 2020, 6, eaay7629.	10.3	28
29	Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting. Biofabrication, 2021, 13, 044109.	7.1	26
30	Experimental and computational study of microfluidic flowâ€focusing generation of gelatin methacrylate hydrogel droplets. Journal of Applied Polymer Science, 2016, 133, .	2.6	24
31	Optimized 3D Bioprinting Technology Based on Machine Learning: A Review of Recent Trends and Advances. Micromachines, 2022, 13, 363.	2.9	23
32	Embryoid body size-mediated differential endodermal and mesodermal differentiation using polyethylene glycol (PEG) microwell array. Macromolecular Research, 2015, 23, 245-255.	2.4	21
33	Rapid fabrication of circular channel microfluidic flowâ€focusing devices for hydrogel droplet generation. Micro and Nano Letters, 2016, 11, 41-45.	1.3	21
34	Polyether ether ketone surface modification with plasma and gelatin for enhancing cell attachment. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 622-629.	3.4	19
35	Magnetic Ranking Cytometry: Profiling Rare Cells at the Single-Cell Level. Accounts of Chemical Research, 2020, 53, 1445-1457.	15.6	18
36	Nanostructured Architectures Promote the Mesenchymal–Epithelial Transition for Invasive Cells. ACS Nano, 2020, 14, 5324-5336.	14.6	17

ZONGJIE WANG

#	Article	IF	CITATIONS
37	A rapid near-patient detection system for SARS-CoV-2 using saliva. Scientific Reports, 2021, 11, 13378.	3.3	17
38	PillarX: A Microfluidic Device to Profile Circulating Tumor Cell Clusters Based on Geometry, Deformability, and Epithelial State. Small, 2022, 18, e2106097.	10.0	17
39	Development of Anatomically Realistic Numerical Breast Phantoms Based on T1- and T2-Weighted MRIs for Microwave Breast Cancer Detection. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 1757-1760.	4.0	16
40	Highâ€ŧhroughput investigation of endothelialâ€ŧoâ€mesenchymal transformation (EndMT) with combinatorial cellular microarrays. Biotechnology and Bioengineering, 2016, 113, 1403-1412.	3.3	16
41	High Throughput Screening of Cell Mechanical Response Using a Stretchable 3D Cellular Microarray Platform. Small, 2020, 16, e2000941.	10.0	16
42	Organ-on-a-Chip Platforms for Drug Screening and Tissue Engineering. Biosystems and Biorobotics, 2016, , 209-233.	0.3	15
43	Biofabrication strategies for engineering heterogeneous artificial tissues. Additive Manufacturing, 2020, 36, 101459.	3.0	15
44	Fluorescent Droplet Cytometry for On-Cell Phenotype Tracking. Journal of the American Chemical Society, 2020, 142, 14805-14809.	13.7	15
45	Phage-Based Profiling of Rare Single Cells Using Nanoparticle-Directed Capture. ACS Nano, 2021, 15, 19202-19210.	14.6	14
46	Antibacterial efficiency assessment of polymer-nanoparticle composites using a high-throughput microfluidic platform. Materials Science and Engineering C, 2020, 111, 110754.	7.3	13
47	Nanoparticle Amplification Labeling for High-Performance Magnetic Cell Sorting. Nano Letters, 2022, 22, 4774-4783.	9.1	13
48	An automated system for high-throughput generation and optimization of microdroplets. Biomicrofluidics, 2016, 10, 054110.	2.4	12
49	Spot Identification and Quality Control in Cell-Based Microarrays. ACS Combinatorial Science, 2012, 14, 471-477.	3.8	11
50	A progressive processing method for breast cancer detection via UWB based on an MRI-derived model. Chinese Physics B, 2014, 23, 074101.	1.4	11
51	A High-Resolution Minimicroscope System for Wireless Real-Time Monitoring. IEEE Transactions on Biomedical Engineering, 2018, 65, 1524-1531.	4.2	11
52	Peptide-Functionalized Nanostructured Microarchitectures Enable Rapid Mechanotransductive Differentiation. ACS Applied Materials & amp; Interfaces, 2019, 11, 41030-41037.	8.0	10
53	Ultrasensitive Detection and Depletion of Rare Leukemic B Cells in T Cell Populations via Immunomagnetic Cell Ranking. Analytical Chemistry, 2021, 93, 2327-2335.	6.5	10
54	Development and in vitro evaluation of photocurable GelMA/PEGDA hybrid hydrogel for corneal stromal cells delivery. Materials Today Communications, 2021, 27, 102459.	1.9	9

ZONGJIE WANG

#	Article	IF	CITATIONS
55	Development and Investigation of a Sweetness Sensor for Sugars -Effect of Lipids Sensors and Materials, 2015, , 1.	0.5	9
56	Detection and Automation Technologies for the Mass Production of Droplet Biomicrofluidics. IEEE Reviews in Biomedical Engineering, 2018, 11, 260-274.	18.0	7
57	A liquid biopsy for detecting circulating mesothelial precursor cells: A new biomarker for diagnosis and prognosis in mesothelioma. EBioMedicine, 2020, 61, 103031.	6.1	7
58	Potentialâ€Responsive Surfaces for Manipulation of Cell Adhesion, Release, and Differentiation. Angewandte Chemie, 2019, 131, 14661-14665.	2.0	6
59	Micro/nanotechnology-inspired rapid diagnosis of respiratory infectious diseases. Biomedical Engineering Letters, 2021, 11, 335-365.	4.1	5
60	A kinetic model for predicting imperfections in the bioink photopolymerization process during visible-light stereolithography printing. Additive Manufacturing, 2022, , 102808.	3.0	5
61	The cleanroom-free rapid fabrication of a liquid conductivity sensor for surface water quality monitoring. Microsystem Technologies, 2016, 22, 2273-2278.	2.0	4
62	A COMPACT DUAL-BAND BAND-PASS FILTER WITH WIDE STOP-BAND USING TWO RESONATORS COMBINED BY VIA-HOLE. Progress in Electromagnetics Research C, 2013, 41, 81-95.	0.9	3
63	An optical multi-sensing system for detection of cardiovascular toxicity. Biotechnology Letters, 2014, 36, 1089-1094.	2.2	3
64	UWB microwave breast cancer detection with MRI-derived 3-D realistic numerical breast model. , 2015, , .		3
65	A microfluidic platform enables comprehensive gene expression profiling of mouse retinal stem cells. Lab on A Chip, 2021, 21, 4464-4476.	6.0	3
66	Novel ultra-wide bandpass filter with notched band using multimode resonator and open stubs. , 2013, , .		2
67	Ultra-wideband microwave robust Capon beamforming imaging system for early breast cancer detection. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 194102.	0.5	2
68	Novel lowpass filter with ultra-wide stopband using defected ground structure. , 2013, , .		0
69	The compact band-pass filter using L slot lines and enhanced air-bridge for the spurious responses suppression. , 2013, , .		0
70	A designing method for bandâ€reject filter with high selectivity and tunable bandwidth. Microwave and Optical Technology Letters, 2017, 59, 1715-1720.	1.4	0