Guenter Haemmerle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2346886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hepatocyteâ€specific deletion of adipose triglyceride lipase (adipose triglyceride lipase/patatinâ€like) Tj ETQq1 I 2022, 75, 125-139.	0.784314 7.3	ł rgBT /Over 25
2	Lipid droplet-mitochondria coupling via perilipin 5 augments respiratory capacity but is dispensable for FA oxidation. Journal of Lipid Research, 2022, 63, 100172.	4.2	25
3	Enterocyte-specific ATGL overexpression affects intestinal and systemic cholesterol homeostasis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159121.	2.4	2
4	Advanced lipodystrophy reverses fatty liver in mice lacking adipocyte hormone-sensitive lipase. Communications Biology, 2021, 4, 323.	4.4	9
5	Carboxylesterase 2 proteins are efficient diglyceride and monoglyceride lipases possibly implicated in metabolic disease. Journal of Lipid Research, 2021, 62, 100075.	4.2	23
6	Low cardiac lipolysis reduces mitochondrial fission and prevents lipotoxic heart dysfunction in Perilipin 5 mutant mice. Cardiovascular Research, 2020, 116, 339-352.	3.8	23
7	The Role of Adipose Triglyceride Lipase and Cytosolic Lipolysis in Cardiac Function and Heart Failure. Cell Reports Medicine, 2020, 1, 100001.	6.5	27
8	Genetically modified mouse models to study hepatic neutral lipid mobilization. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 879-894.	3.8	17
9	The lipid-droplet-associated protein ABHD5 protects the heart through proteolysis of HDAC4. Nature Metabolism, 2019, 1, 1157-1167.	11.9	42
10	Intestine‧pecific Overexpression of Carboxylesterase 2c Protects Mice From Dietâ€Induced Liver Steatosis and Obesity. Hepatology Communications, 2019, 3, 227-245.	4.3	24
11	Brown adipose tissue whitening leads to brown adipocyte death and adipose tissue inflammation. Journal of Lipid Research, 2018, 59, 784-794.	4.2	184
12	ABHD5 stimulates PNPLA1-mediated ω-O-acylceramide biosynthesis essential for a functional skin permeability barrier. Journal of Lipid Research, 2018, 59, 2360-2367.	4.2	38
13	Extended-resolution imaging of the interaction of lipid droplets and mitochondria. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1285-1296.	2.4	17
14	Skin Barrier Development Depends on CGI-58 Protein Expression during Late-Stage Keratinocyte Differentiation. Journal of Investigative Dermatology, 2017, 137, 403-413.	0.7	33
15	Cold-Induced Thermogenesis Depends on ATGL-Mediated Lipolysis in Cardiac Muscle, but Not Brown Adipose Tissue. Cell Metabolism, 2017, 26, 753-763.e7.	16.2	242
16	PNPLA1 Deficiency in Mice and HumansÂLeads to a Defect in the SynthesisÂof Omega-O-Acylceramides. Journal of Investigative Dermatology, 2017, 137, 394-402.	0.7	78
17	Adipocyte STAT5 deficiency promotes adiposity and impairs lipid mobilisation in mice. Diabetologia, 2017, 60, 296-305.	6.3	48
18	Regulation of Hepatic Triacylglycerol Metabolism by CGI-58 Does Not Require ATGL Co-activation. Cell Reports, 2016, 16, 939-949.	6.4	36

Guenter Haemmerle

#	Article	IF	CITATIONS
19	Fat in the heart: The enzymatic machinery regulating cardiac triacylglycerol metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1500-1512.	2.4	13
20	Lysosomal Acid Lipase Hydrolyzes Retinyl Ester and Affects Retinoid Turnover. Journal of Biological Chemistry, 2016, 291, 17977-17987.	3.4	40
21	Fatty Acid-binding Proteins Interact with Comparative Gene Identification-58 Linking Lipolysis with Lipid Ligand Shuttling. Journal of Biological Chemistry, 2015, 290, 18438-18453.	3.4	49
22	Hypophagia and metabolic adaptations in mice with defective ATGL-mediated lipolysis cause resistance to HFD-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13850-13855.	7.1	58
23	The Interplay of Protein Kinase A and Perilipin 5 Regulates Cardiac Lipolysis*. Journal of Biological Chemistry, 2015, 290, 1295-1306.	3.4	75
24	Adipose triglyceride lipase is involved in the mobilization of triglyceride and retinoid stores of hepatic stellate cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 937-945.	2.4	40
25	Fasting-induced G0/G1 switch gene 2 and FGF21 expression in the liver are under regulation of adipose tissue derived fatty acids. Journal of Hepatology, 2015, 63, 437-445.	3.7	40
26	Fibroblast growth factor 21 is induced upon cardiac stress and alters cardiac lipid homeostasis. Journal of Lipid Research, 2014, 55, 2229-2241.	4.2	57
27	Role of the ubiquitin–proteasome system in cardiac dysfunction of adipose triglyceride lipase-deficient mice. Journal of Molecular and Cellular Cardiology, 2014, 77, 11-19.	1.9	8
28	Comparative gene identification-58/α/β hydrolase domain 5. Current Opinion in Lipidology, 2014, 25, 102-109.	2.7	12
29	Adipose triglyceride lipase activity is inhibited by long-chain acyl-coenzyme A. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 588-594.	2.4	50
30	Endothelial dysfunction in adipose triglyceride lipase deficiency. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 906-917.	2.4	25
31	Cardiac oxidative stress in a mouse model of neutral lipid storage disease. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1600-1608.	2.4	25
32	Early structural and metabolic cardiac remodelling in response to inducible adipose triglyceride lipase ablation. Cardiovascular Research, 2013, 99, 442-451.	3.8	52
33	Myocardial Adipose Triglyceride Lipase Overexpression Protects Diabetic Mice From the Development of Lipotoxic Cardiomyopathy. Diabetes, 2013, 62, 1464-1477.	0.6	78
34	Functional Cardiac Lipolysis in Mice Critically Depends on Comparative Gene Identification-58. Journal of Biological Chemistry, 2013, 288, 9892-9904.	3.4	60
35	Cardiac-specific overexpression of perilipin 5 provokes severe cardiac steatosis via the formation of a lipolytic barrier. Journal of Lipid Research, 2013, 54, 1092-1102.	4.2	97
36	The impact of genetic stress by ATGL deficiency on the lipidome of lipid droplets from murine hepatocytes. Journal of Lipid Research, 2013, 54, 2185-2194.	4.2	18

#	Article	IF	CITATIONS
37	Adipose Triglyceride Lipase (ATGL) and Hormone-Sensitive Lipase (HSL) Deficiencies Affect Expression of Lipolytic Activities in Mouse Adipose Tissues. Molecular and Cellular Proteomics, 2012, 11, 1777-1789.	3.8	82
38	Myocardial ATGL Overexpression Decreases the Reliance on Fatty Acid Oxidation and Protects against Pressure Overload-Induced Cardiac Dysfunction. Molecular and Cellular Biology, 2012, 32, 740-750.	2.3	95
39	Cholesteryl ester accumulation and accelerated cholesterol absorption in intestine-specific hormone sensitive lipase-null mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 1406-1414.	2.4	15
40	FAT SIGNALS - Lipases and Lipolysis in Lipid Metabolism and Signaling. Cell Metabolism, 2012, 15, 279-291.	16.2	852
41	Adiponutrin Functions as a Nutritionally Regulated Lysophosphatidic Acid Acyltransferase. Cell Metabolism, 2012, 15, 691-702.	16.2	258
42	Absence of adipose triglyceride lipase protects from hepatic endoplasmic reticulum stress in mice. Hepatology, 2012, 56, 270-280.	7.3	75
43	ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. Nature Medicine, 2011, 17, 1076-1085.	30.7	612
44	Adipose Triglyceride Lipase Contributes to Cancer-Associated Cachexia. Science, 2011, 333, 233-238.	12.6	475
45	Impairment of hepatic growth hormone and glucocorticoid receptor signaling causes steatosis and hepatocellular carcinoma in mice. Hepatology, 2011, 54, 1398-1409.	7.3	100
46	Fat in the skin. Dermato-Endocrinology, 2011, 3, 77-83.	1.8	23
47	Monoglyceride Lipase Deficiency in Mice Impairs Lipolysis and Attenuates Diet-induced Insulin Resistance. Journal of Biological Chemistry, 2011, 286, 17467-17477.	3.4	224
48	Macrophage Adipose Triglyceride Lipase Deficiency Attenuates Atherosclerotic Lesion Development in Low-Density Lipoprotein Receptor Knockout Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 67-73.	2.4	44
49	Cholesteryl ester hydrolase activity is abolished in HSL macrophages but unchanged in macrophages lacking KIAA1363. Journal of Lipid Research, 2010, 51, 2896-2908.	4.2	45
50	Efficient Phagocytosis Requires Triacylglycerol Hydrolysis by Adipose Triglyceride Lipase. Journal of Biological Chemistry, 2010, 285, 20192-20201.	3.4	126
51	Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. Journal of Clinical Investigation, 2010, 120, 3466-3479.	8.2	580
52	Adipose triglyceride lipase plays a key role in the supply of the working muscle with fatty acids. Journal of Lipid Research, 2010, 51, 490-499.	4.2	89
53	Growth Retardation, Impaired Triacylglycerol Catabolism, Hepatic Steatosis, and Lethal Skin Barrier Defect in Mice Lacking Comparative Gene Identification-58 (CGI-58). Journal of Biological Chemistry, 2010, 285, 7300-7311.	3.4	168
54	Adipose Triglyceride Lipase Deficiency Causes Tissue-specific Changes in Insulin Signaling. Journal of Biological Chemistry, 2009, 284, 30218-30229.	3.4	101

GUENTER HAEMMERLE

#	Article	IF	CITATIONS
55	Adipose Triglyceride Lipase Is Implicated in Fuel- and Non-fuel-stimulated Insulin Secretion. Journal of Biological Chemistry, 2009, 284, 16848-16859.	3.4	73
56	Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. Journal of Lipid Research, 2009, 50, 3-21.	4.2	449
57	Esterase 22 and beta-glucuronidase hydrolyze retinoids in mouse liver. Journal of Lipid Research, 2009, 50, 2514-2523.	4.2	25
58	Fate of fat: The role of adipose triglyceride lipase in lipolysis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 494-500.	2.4	192
59	Validated Comprehensive Analytical Method for Quantification of Coenzyme A Activated Compounds in Biological Tissues by Online Solid-Phase Extraction LC/MS/MS. Analytical Chemistry, 2008, 80, 5736-5742.	6.5	51
60	The C-terminal Region of Human Adipose Triglyceride Lipase Affects Enzyme Activity and Lipid Droplet Binding. Journal of Biological Chemistry, 2008, 283, 17211-17220.	3.4	133
61	Defective Lipolysis and Altered Energy Metabolism in Mice Lacking Adipose Triglyceride Lipase. Science, 2006, 312, 734-737.	12.6	1,135
62	Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metabolism, 2006, 3, 309-319.	16.2	766
63	Adipose Triglyceride Lipase and Hormone-sensitive Lipase Are the Major Enzymes in Adipose Tissue Triacylglycerol Catabolism. Journal of Biological Chemistry, 2006, 281, 40236-40241.	3.4	562
64	Lipolysis: pathway under construction. Current Opinion in Lipidology, 2005, 16, 333-340.	2.7	234
65	The Lipolytic Proteome of Mouse Adipose Tissue. Molecular and Cellular Proteomics, 2005, 4, 1710-1717.	3.8	53
66	Endothelial lipase provides an alternative pathway for FFA uptake in lipoprotein lipase–deficient mouse adipose tissue. Journal of Clinical Investigation, 2005, 115, 161-167.	8.2	23
67	Endothelial lipase provides an alternative pathway for FFA uptake in lipoprotein lipase–deficient mouse adipose tissue. Journal of Clinical Investigation, 2005, 115, 161-167.	8.2	42
68	Cardiac-specific Knock-out of Lipoprotein Lipase Alters Plasma Lipoprotein Triglyceride Metabolism and Cardiac Gene Expression. Journal of Biological Chemistry, 2004, 279, 25050-25057.	3.4	107
69	Defective uptake of triglyceride-associated fatty acids in adipose tissue causes the SREBP-1c-mediated induction of lipogenesis. Journal of Lipid Research, 2004, 45, 356-365.	4.2	23
70	Fat Mobilization in Adipose Tissue Is Promoted by Adipose Triglyceride Lipase. Science, 2004, 306, 1383-1386.	12.6	1,744
71	Decreased fatty acid esterification compensates for the reduced lipolytic activity in hormone-sensitive lipase-deficient white adipose tissue. Journal of Lipid Research, 2003, 44, 2089-2099.	4.2	99
72	Increased Hepatic Insulin Sensitivity Together with Decreased Hepatic Triglyceride Stores in Hormone-Sensitive Lipase-Deficient Mice. Endocrinology, 2003, 144, 3456-3462.	2.8	104

#	ARTICLE	IF	CITATIONS
73	Letting lipids go: hormone-sensitive lipase. Current Opinion in Lipidology, 2003, 14, 289-297.	2.7	74
74	Hormone-sensitive Lipase Deficiency in Mice Causes Diglyceride Accumulation in Adipose Tissue, Muscle, and Testis. Journal of Biological Chemistry, 2002, 277, 4806-4815.	3.4	512
75	Hormone-sensitive Lipase Deficiency in Mice Changes the Plasma Lipid Profile by Affecting the Tissue-specific Expression Pattern of Lipoprotein Lipase in Adipose Tissue and Muscle. Journal of Biological Chemistry, 2002, 277, 12946-12952.	3.4	132