Stanley R Maloy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2346814/publications.pdf

Version: 2024-02-01

172457 168389 3,264 111 29 53 citations g-index h-index papers 121 121 121 2549 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Climate change and microbes., 2021,, 195-203.		1
2	The ASM Journals Committee Values the Contributions of Black Microbiologists. Infection and Immunity, 2020, 88, .	2.2	0
3	The ASM Journals Committee Values the Contributions of Black Microbiologists. Microbiology Spectrum, 2020, 8, .	3.0	O
4	The ASM Journals Committee Values the Contributions of Black Microbiologists. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	0
5	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Virology, 2020, 94, .	3.4	O
6	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Bacteriology, 2020, 202, .	2.2	0
7	Opening doors for diverse talent in biotechnology with the BIO I-Corps experience. Nature Biotechnology, 2020, 38, 1099-1102.	17.5	3
8	The ASM Journals Committee Values the Contributions of Black Microbiologists. Microbiology and Molecular Biology Reviews, 2020, 84, .	6.6	0
9	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Microbiology and Biology Education, 2020, 21, .	1.0	2
10	The ASM Journals Committee Values the Contributions of Black Microbiologists. MSystems, 2020, 5, .	3.8	0
11	The ASM Journals Committee Values the Contributions of Black Microbiologists. Microbiology Resource Announcements, 2020, 9, .	0.6	O
12	The ASM Journals Committee Values the Contributions of Black Microbiologists. MBio, 2020, 11 , .	4.1	3
13	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Clinical Microbiology, 2020, 58, .	3.9	1
14	The ASM Journals Committee Values the Contributions of Black Microbiologists. Applied and Environmental Microbiology, 2020, 86, .	3.1	1
15	The ASM Journals Committee Values the Contributions of Black Microbiologists. MSphere, 2020, 5, .	2.9	1
16	The ASM Journals Committee Values the Contributions of Black Microbiologists. Molecular and Cellular Biology, 2020, 40, .	2.3	0
17	The ASM Journals Committee Values the Contributions of Black Microbiologists. Clinical Microbiology Reviews, 2020, 33, .	13.6	1
18	REMEMBRANCE: Robert W. Simons. Molecular Microbiology, 2019, 112, 333-334.	2.5	0

#	Article	IF	CITATIONS
19	The Role of Phage in the Adaptation of Bacteria to New Environmental Niches. Grand Challenges in Biology and Biotechnology, 2018, , 267-306.	2.4	4
20	Genomic Comparison of the Closely-Related Salmonella enterica Serovars Enteritidis, Dublin and Gallinarum. PLoS ONE, 2015, 10, e0126883.	2.5	39
21	The Future of One Health. Microbiology Spectrum, 2014, 2, OH-0018-2012.	3.0	9
22	Genomic and Metagenomic Approaches for Predicting Pathogen Evolution. Microbiology Spectrum, 2014, 2, OH-0019-2013.	3.0	3
23	One Health and Food-Borne Disease: <i>Salmonella</i> Transmission between Humans, Animals, and Plants. Microbiology Spectrum, 2014, 2, OH-0020-2013.	3.0	78
24	Bacterial Genetics., 2013,, 317-325.		1
25	Role of bacteriophage-encoded exotoxins in the evolution of bacterial pathogens. Future Microbiology, 2011, 6, 1461-1473.	2.0	45
26	Bacteriophage-encoded shiga toxin gene in atypical bacterial host. Gut Pathogens, 2011, 3, 10.	3.4	9
27	Chromosomal Rearrangements in Salmonella enterica Serovar Typhi Strains Isolated from Asymptomatic Human Carriers. MBio, 2011, 2, e00060-11.	4.1	27
28	Reservoir of Bacterial Exotoxin Genes in the Environment. International Journal of Microbiology, 2010, 2010, 1-10.	2.3	11
29	Chromosomal Rearrangements Formed by rrn Recombination Do Not Improve Replichore Balance in Host-Specific Salmonella enterica Serovars. PLoS ONE, 2010, 5, e13503.	2.5	12
30	Roundtable: Sustainability in Graduate Schools, Do grad students need master's degrees in sustainabilityâ€"and will they be able to get jobs with them?. Sustainability, 2010, 3, 90-95.	0.7	0
31	Fitness Effects of Replichore Imbalance in <i>Salmonella enterica</i> . Journal of Bacteriology, 2010, 192, 6086-6088.	2,2	10
32	One Health—Attaining Optimal Health for People, Animals, and the Environment. Microbe Magazine, 2010, 5, 383-389.	0.4	33
33	Transport of Phage P22 DNA across the Cytoplasmic Membrane. Journal of Bacteriology, 2009, 191, 135-140.	2.2	30
34	Macrophages influence Salmonella host-specificity in vivo. Microbial Pathogenesis, 2009, 47, 212-222.	2.9	21
35	The 2009 Thomas Hunt Morgan Medal. Genetics, 2009, 181, 823-825.	2.9	1
36	Strain Collections and Genetic Nomenclature. Methods in Enzymology, 2007, 421, 3-8.	1.0	3

#	Article	IF	CITATIONS
37	Localized Mutagenesis. Methods in Enzymology, 2007, 421, 42-50.	1.0	1
38	Use of Operon and Gene Fusions to Study Gene Regulation in Salmonella. Methods in Enzymology, 2007, 421, 140-158.	1.0	12
39	Dissecting Nucleic Acid–Protein Interactions Using Challenge Phage. Methods in Enzymology, 2007, 421, 227-249.	1.0	2
40	Mudâ€P22. Methods in Enzymology, 2007, 421, 249-259.	1.0	2
41	Isolation of Transposon Insertions. Methods in Enzymology, 2007, 421, 35-42.	1.0	1
42	Use of Antibioticâ€Resistant Transposons for Mutagenesis. Methods in Enzymology, 2007, 421, 11-17.	1.0	5
43	Facile approach for constructing TEV insertions to probe protein structure in vivo. BioTechniques, 2006, 41, 721-724.	1.8	1
44	The era of microbiology: a golden phoenix. International Microbiology, 2006, 9, 1-7.	2.4	32
45	An Open Letter to Elias Zerhouni. Science, 2005, 307, 1409c-1410c.	12.6	23
46	Pigeon-Associated Strains of Salmonella enterica Serovar Typhimurium Phage Type DT2 Have Genomic Rearrangements at rRNA Operons. Infection and Immunity, 2004, 72, 7338-7341.	2.2	18
47	Genomic Rearrangements at <i>rrn</i> Operons in Salmonella. Genetics, 2003, 165, 951-959.	2.9	35
48	Comparative genomics of closely related salmonellae. Trends in Microbiology, 2002, 10, 94-99.	7.7	193
49	The importance of complete genome sequences. Trends in Microbiology, 2002, 10, 220.	7.7	0
50	Inside or Outside: Detecting the Cellular Location of Bacterial Pathogens. BioTechniques, 2001, 30, 304-311.	1.8	4
51	Substrate recognition by proline permease in Salmonella. Amino Acids, 2001, 21, 161-174.	2.7	11
52	Salmonella enterica Serovar Typhi Possesses a Unique Repertoire of Fimbrial Gene Sequences. Infection and Immunity, 2001, 69, 2894-2901.	2.2	166
53	Rapid Approach To Determine rrn Arrangement in Salmonella Serovars. Applied and Environmental Microbiology, 2001, 67, 3295-3298.	3.1	16
54	Genomic analysis and growth-phase-dependent regulation of the SEF14 fimbriae of Salmonella enterica serovar Enteritidis The GenBank accession number for the sequence reported in this paper is AF239978 Microbiology (United Kingdom), 2001, 147, 2705-2715.	1.8	21

#	Article	lF	Citations
55	CheB is required for behavioural responses to negative stimuli during chemotaxis in Bacillus subtilis. Molecular Microbiology, 2000, 35, 44-57.	2.5	50
56	Evolution of microbial pathogens. Trends in Genetics, 2000, 16, 115.	6.7	0
57	A role for Salmonella fimbriae in intraperitoneal infections. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1258-1262.	7.1	95
58	Surrogate Genetics: The Use of Bacterial Hybrids as a Genetic Tool. Methods, 2000, 20, 73-79.	3.8	8
59	Increasing DNA Transfer Efficiency by Temporary Inactivation of Host Restriction. BioTechniques, 1999, 26, 892-900.	1.8	42
60	Eye of newt and toe of frog. Trends in Genetics, 1999, 15, 250.	6.7	1
61	Regulation of flavin dehydrogenase compartmentalization: requirements for PutA–membrane association in Salmonella typhimurium. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1421, 5-18.	2.6	30
62	Effect of mutS and recD Mutations on Salmonella Virulence. Infection and Immunity, 1999, 67, 6168-6172.	2.2	24
63	Purification of a hexahistidine-tagged protein using L-histidine as the eluent. Technical Tips Online, 1998, 3, 54-55.	0.2	2
64	Use of P22 challenge phage to identify protein-nucleic acid binding sites. Technical Tips Online, 1998, 3, 111-119.	0.2	2
65	Examining E. Coli Escherichia coli: Mechanisms of Virulence Max Sussman. BioScience, 1998, 48, 322-324.	4.9	0
66	The PutA Protein of Salmonella typhimurium Catalyzes the Two Steps of Proline Degradation via a Leaky Channel. Archives of Biochemistry and Biophysics, 1998, 354, 281-287.	3.0	36
67	Chapter 4 Bacterial genetics. Principles of Medical Biology, 1998, , 41-63.	0.1	0
68	Genetic Analysis, Using P22 Challenge Phage, of the Nitrogen Activator Protein DNA-Binding Site in the <i>Klebsiella aerogenes put</i>	2.2	16
69	A cryptic proline permease in Salmonella typhimurium. Microbiology (United Kingdom), 1997, 143, 2903-2911.	1.8	22
70	Barriers to recombination between closely related bacteria: MutS and RecBCD inhibit recombination between Salmonella typhimurium and Salmonella typhi. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 9786-9791.	7.1	98
71	Regulation of gene expression by repressor localization: biochemical evidence that membrane and DNA binding by the PutA protein are mutually exclusive. Journal of Bacteriology, 1997, 179, 2788-2791.	2.2	65
72	Survival in a cruel world: how Vibrio cholerae and Salmonella respond to an unwilling host Genes and Development, 1997, 11, 1761-1774.	5.9	31

#	Article	IF	Citations
73	MudSacl, a transposon with strong selectable and counterselectable markers: use for rapid mapping of chromosomal mutations in Salmonella typhimurium. Journal of Bacteriology, 1995, 177, 1383-1387.	2.2	37
74	Protein phosphorylation on serine, threonine, and tyrosine residues modulates membrane-protein interactions and transcriptional regulation in Salmonella typhimurium Genes and Development, 1995, 9, 2034-2041.	5.9	41
75	Proline Dehydrogenase Activity of the Transcriptional Repressor PutA Is Required for Induction of the put Operon by Proline (â^—). Journal of Biological Chemistry, 1995, 270, 9819-9827.	3.4	50
76	Inactivation of mismatch repair overcomes the barrier to transduction between Salmonella typhimurium and Salmonella typhi. Journal of Bacteriology, 1994, 176, 1527-1529.	2.2	68
77	PutA protein, a membrane-associated flavin dehydrogenase, acts as a redox-dependent transcriptional regulator Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 4295-4298.	7.1	120
78	DNA sequence of theputAgene from Salmonella typhimurium: a bifunctional membrane-associated dehydrogenase that binds DNA. Nucleic Acids Research, 1993, 21, 1676-1676.	14.5	22
79	Autogenous regulation of gene expression. Journal of Bacteriology, 1993, 175, 307-316.	2.2	52
80	Integration host factor facilitates repression of the put operon in Salmonella typhimurium. Gene, 1992, 118, 13-19.	2.2	20
81	Regulation of proline utilization in enteric bacteria: cloning and characterization of the Klebsiella put control region. Journal of Bacteriology, 1991, 173, 783-790.	2.2	45
82	Regulation of proline utilization in Salmonella typhimurium: a membrane-associated dehydrogenase binds DNA in vitro. Journal of Bacteriology, 1991, 173, 211-219.	2.2	85
83	Dissecting the molecular mechanism of ion-solute cotransport: Substrate specificity mutations in theputP gene affect the kinetics of proline transport. Journal of Membrane Biology, 1991, 121, 201-214.	2.1	9
84	Regulation of proline utilization in Salmonella typhimurium: How do cells avoid a futile cycle?. Molecular Genetics and Genomics, 1990, 220, 492-494.	2.4	17
85	Activation of a new proline transport system in Salmonella typhimurium. Journal of Bacteriology, 1990, 172, 2940-2945.	2.2	6
86	Family Spirosomaceae: Gram-Negative Ring-Forming Aerobic Bacteria. Critical Reviews in Microbiology, 1990, 17, 329-364.	6.1	14
87	Computer programs for the rapid determination of enzyme kinetics on MS-DOS compatible microcomputers. Bioinformatics, 1990, 6, 63-65.	4.1	2
88	Computer programs for the rapid determination of enzyme kinetics on MS-DOS compatible microcomputers. Bioinformatics, 1990, 6, 51-53.	4.1	0
89	Proposal of Cyclobacterium marinus gen. nov., comb. nov. for a Marine Bacterium Previously Assigned to the Genus Flectobacillus. International Journal of Systematic Bacteriology, 1990, 40, 337-347.	2.8	70
90	DNA Sequence of theputPgene fromSalmonella typhimuriumand predicted structure of proline permease. Nucleic Acids Research, 1990, 18, 3057-3057.	14.5	13

#	Article	IF	CITATIONS
91	Sequence analysis of theiclRgene encoding the repressor of the acetate operon inSalmonella typhimurium. Nucleic Acids Research, 1990, 18, 3656-3656.	14.5	19
92	Phylogenetic Placement of the Spirosomaceae. Systematic and Applied Microbiology, 1990, 13, 19-23.	2.8	35
93	Sodium-Coupled Cotransport. , 1990, , 203-224.		18
94	Regulation of proline utilization in Salmonella typhimurium: Molecular characterization of the put operon, and DNA sequence of the put control region. Molecular Genetics and Genomics, 1988, 213, 125-133.	2.4	49
95	Mutations of putP that alter the lithium sensitivity of Salmonella typhimurium. Molecular Microbiology, 1988, 2, 749-755.	2.5	21
96	Acetohydroxy acid synthase I is required for isoleucine and valine biosynthesis by Salmonella typhimurium LT2 during growth on acetate or long-chain fatty acids. Journal of Bacteriology, 1987, 169, 917-919.	2.2	19
97	Isolation and characterization of Salmonella typhimurium glyoxylate shunt mutants. Journal of Bacteriology, 1987, 169, 3029-3034.	2.2	29
98	Proline transport in Salmonella typhimurium: putP permease mutants with altered substrate specificity. Journal of Bacteriology, 1986, 168, 590-594.	2.2	28
99	REGULATION OF THE <i>put</i> OPERON IN <i>SALMONELLA TYPHIMURIUM</i> CHARACTERIZATION OF PROMOTER AND OPERATOR MUTATIONS. Genetics, 1986, 114, 687-703.	2.9	17
100	Genetic regulation of the glyoxylate shunt in Escherichia coli K-12. Journal of Bacteriology, 1982, 149, 173-180.	2.2	144
101	Selection for loss of tetracycline resistance by Escherichia coli. Journal of Bacteriology, 1981, 145, 1110-1111.	2.2	645
102	Role of gene fadR in Escherichia coli acetate metabolism. Journal of Bacteriology, 1981, 148, 83-90.	2.2	52
103	Elevated levels of glyoxylate shunt enzymes in Escherichia coli strains constitutive for fatty acid degradation. Journal of Bacteriology, 1980, 143, 720-725.	2.2	90
104	Phage and Bacterial Genetics at Cold Spring Harbor Laboratory., 0,, 23-25.		1
105	Genome Rearrangements in Salmonella. , 0, , 41-48.		2
106	Genomic and Metagenomic Approaches for Predicting Pathogen Evolution., 0,, 227-235.		1
107	One Health and Food-Borne Disease: <i>Salmonella</i> Transmission between Humans, Animals, and Plants., 0,, 137-148.		7
108	The Future of One Health., 0,, 303-306.		0

#	Article	IF	CITATIONS
109	Emerging Infectious Diseases of Wildlife and Species Conservation. , 0, , 67-79.		O
110	John Roth's Paths and Pathways. , 0, , 1-7.		0
111	Control of Gene Expression by Compartmentalization: the <i>put </i> fi>Operon., 0,, 55-63.		O