
Thomas F Jaramillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2346625/publications.pdf Version: 2024-02-01

ΤΗΟΜΑς ΕΙΔΡΑΜΙΙΙΟ

#	Article	IF	CITATIONS
1	Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355,	6.0	7,837
2	Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2013, 135, 16977-16987.	6.6	5,311
3	Identification of Active Edge Sites for Electrochemical H ₂ Evolution from MoS ₂ Nanocatalysts. Science, 2007, 317, 100-102.	6.0	5,149
4	Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Materials, 2006, 5, 909-913.	13.3	3,305
5	Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces. ChemCatChem, 2011, 3, 1159-1165.	1.8	3,208
6	Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. Journal of the American Chemical Society, 2015, 137, 4347-4357.	6.6	3,158
7	Engineering the surface structure of MoS2 toÂpreferentially expose active edge sites forAelectrocatalysis. Nature Materials, 2012, 11, 963-969.	13.3	2,896
8	Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chemistry, 2009, 1, 552-556.	6.6	2,716
9	Progress and Perspectives of Electrochemical CO ₂ Reduction on Copper in Aqueous Electrolyte. Chemical Reviews, 2019, 119, 7610-7672.	23.0	2,708
10	New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy and Environmental Science, 2012, 5, 7050.	15.6	2,374
11	A highly active and stable IrO <i> _x </i> /SrIrO ₃ catalyst for the oxygen evolution reaction. Science, 2016, 353, 1011-1014.	6.0	1,606
12	What would it take for renewably powered electrosynthesis to displace petrochemical processes?. Science, 2019, 364, .	6.0	1,505
13	A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation. Journal of the American Chemical Society, 2010, 132, 13612-13614.	6.6	1,425
14	Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials. ACS Catalysis, 2014, 4, 3957-3971.	5.5	1,355
15	Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces. Journal of the American Chemical Society, 2014, 136, 14107-14113.	6.6	1,253
16	Materials for solar fuels and chemicals. Nature Materials, 2017, 16, 70-81.	13.3	1,163
17	High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nature Catalysis, 2018, 1, 156-162.	16.1	1,120
18	Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy and Environmental Science, 2013, 6, 1983.	15.6	1,119

#	Article	IF	CITATIONS
19	Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution. ACS Energy Letters, 2016, 1, 589-594.	8.8	1,100
20	Core–shell MoO ₃ –MoS ₂ Nanowires for Hydrogen Evolution: A Functional Design for Electrocatalytic Materials. Nano Letters, 2011, 11, 4168-4175.	4.5	1,099
21	Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. Journal of Materials Research, 2010, 25, 3-16.	1.2	1,032
22	Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity. ACS Catalysis, 2012, 2, 1916-1923.	5.5	1,007
23	A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature, 2019, 570, 504-508.	13.7	1,006
24	Molybdenum Phosphosulfide: An Active, Acid‧table, Earthâ€Abundant Catalyst for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2014, 53, 14433-14437.	7.2	908
25	Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy and Environmental Science, 2015, 8, 3022-3029.	15.6	851
26	Branched TiO ₂ Nanorods for Photoelectrochemical Hydrogen Production. Nano Letters, 2011, 11, 4978-4984.	4.5	843
27	Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discussions, 2008, 140, 219-231.	1.6	732
28	Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2â^' clusters. Nature Chemistry, 2014, 6, 248-253.	6.6	730
29	Electrochemical Ammonia Synthesis—The Selectivity Challenge. ACS Catalysis, 2017, 7, 706-709.	5.5	689
30	Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide. Journal of the American Chemical Society, 2017, 139, 11277-11287.	6.6	653
31	Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes. ACS Catalysis, 2017, 7, 4822-4827.	5.5	637
32	Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Advances, 2012, 2, 7933.	1.7	618
33	Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nature Communications, 2016, 7, 13237.	5.8	610
34	Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nature Catalysis, 2018, 1, 764-771.	16.1	501
35	In Situ X-ray Absorption Spectroscopy Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction. Journal of the American Chemical Society, 2013, 135, 8525-8534.	6.6	478
36	Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. Journal of Materials Chemistry A, 2016, 4, 3068-3076.	5.2	477

#	Article	IF	CITATIONS
37	Electrochemical CO ₂ Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity. Journal of the American Chemical Society, 2017, 139, 15848-15857.	6.6	470
38	Gold-supported cerium-doped NiOx catalysts for water oxidation. Nature Energy, 2016, 1, .	19.8	458
39	Plasmon Enhanced Solar-to-Fuel Energy Conversion. Nano Letters, 2011, 11, 3440-3446.	4.5	456
40	Insights into the electrocatalytic reduction of CO ₂ on metallic silver surfaces. Physical Chemistry Chemical Physics, 2014, 16, 13814-13819.	1.3	455
41	Enhancement of Photocatalytic and Electrochromic Properties of Electrochemically Fabricated Mesoporous WO3 Thin Films. Advanced Materials, 2003, 15, 1269-1273.	11.1	450
42	Gas-Diffusion Electrodes for Carbon Dioxide Reduction: A New Paradigm. ACS Energy Letters, 2019, 4, 317-324.	8.8	416
43	A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Solar Energy Materials and Solar Cells, 2003, 77, 229-237.	3.0	408
44	Catalytic Activity of Supported Au Nanoparticles Deposited from Block Copolymer Micelles. Journal of the American Chemical Society, 2003, 125, 7148-7149.	6.6	397
45	pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nature Communications, 2019, 10, 32.	5.8	371
46	Ammonia synthesis from N ₂ and H ₂ O using a lithium cycling electrification strategy at atmospheric pressure. Energy and Environmental Science, 2017, 10, 1621-1630.	15.6	342
47	Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide. Nature Communications, 2017, 8, 701.	5.8	333
48	Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. Physical Chemistry Chemical Physics, 2012, 14, 14010.	1.3	332
49	Engineering Cu surfaces for the electrocatalytic conversion of CO ₂ : Controlling selectivity toward oxygenates and hydrocarbons. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5918-5923.	3.3	311
50	Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide. Journal of the American Chemical Society, 2018, 140, 7851-7859.	6.6	310
51	Electrochemical Carbon Monoxide Reduction on Polycrystalline Copper: Effects of Potential, Pressure, and pH on Selectivity toward Multicarbon and Oxygenated Products. ACS Catalysis, 2018, 8, 7445-7454.	5.5	305
52	Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal Active Site Motifs for CO ₂ Reduction. ACS Catalysis, 2017, 7, 6600-6608.	5.5	300
53	Active MnO _x Electrocatalysts Prepared by Atomic Layer Deposition for Oxygen Evolution and Oxygen Reduction Reactions. Advanced Energy Materials, 2012, 2, 1269-1277.	10.2	298
54	Standards and Protocols for Data Acquisition and Reporting for Studies of the Electrochemical Reduction of Carbon Dioxide. ACS Catalysis, 2018, 8, 6560-6570.	5.5	250

#	Article	IF	CITATIONS
55	Thin Films of Sodium Birnessite-Type MnO ₂ : Optical Properties, Electronic Band Structure, and Solar Photoelectrochemistry. Journal of Physical Chemistry C, 2011, 115, 11830-11838.	1.5	249
56	Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nature Energy, 2022, 7, 130-143.	19.8	237
57	Defective Carbon-Based Materials for the Electrochemical Synthesis of Hydrogen Peroxide. ACS Sustainable Chemistry and Engineering, 2018, 6, 311-317.	3.2	236
58	Hydrogen Evolution on Supported Incomplete Cubane-type [Mo ₃ S ₄] ⁴⁺ Electrocatalysts. Journal of Physical Chemistry C, 2008, 112, 17492-17498.	1.5	218
59	Steady state oxygenreduction and cyclic voltammetry. Faraday Discussions, 2008, 140, 337-346.	1.6	218
60	Electrolyte Engineering for Efficient Electrochemical Nitrate Reduction to Ammonia on a Titanium Electrode. ACS Sustainable Chemistry and Engineering, 2020, 8, 2672-2681.	3.2	217
61	Substrate Selection for Fundamental Studies of Electrocatalysts and Photoelectrodes: Inert Potential Windows in Acidic, Neutral, and Basic Electrolyte. PLoS ONE, 2014, 9, e107942.	1.1	213
62	New cubic perovskites for one- and two-photon water splitting using the computational materials repository. Energy and Environmental Science, 2012, 5, 9034.	15.6	211
63	A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. Nature Nanotechnology, 2019, 14, 1071-1074.	15.6	209
64	Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation. Journal of the American Chemical Society, 2014, 136, 4920-4926.	6.6	205
65	Synthesis and Characterization of Ptâ^'WO3as Methanol Oxidation Catalysts for Fuel Cells. Journal of Physical Chemistry B, 2005, 109, 22958-22966.	1.2	201
66	Size- and Support-Dependent Electronic and Catalytic Properties of Au0/Au3+Nanoparticles Synthesized from Block Copolymer Micelles. Journal of the American Chemical Society, 2003, 125, 12928-12934.	6.6	197
67	Meso-Structured Platinum Thin Films: Active and Stable Electrocatalysts for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2012, 134, 7758-7765.	6.6	195
68	Modeling Practical Performance Limits of Photoelectrochemical Water Splitting Based on the Current State of Materials Research. ChemSusChem, 2014, 7, 1372-1385.	3.6	195
69	Mn ₃ O ₄ Supported on Glassy Carbon: An Active Non-Precious Metal Catalyst for the Oxygen Reduction Reaction. ACS Catalysis, 2012, 2, 2687-2694.	5.5	192
70	Cyclic Voltammograms for H on Pt(111) and Pt(100) from First Principles. Physical Review Letters, 2007, 99, 126101.	2.9	189
71	Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold. Nature Communications, 2020, 11, 33.	5.8	188
72	Revealing the Synergy between Oxide and Alloy Phases on the Performance of Bimetallic In–Pd Catalysts for CO ₂ Hydrogenation to Methanol. ACS Catalysis, 2019, 9, 3399-3412.	5.5	173

#	Article	IF	CITATIONS
73	Oxidation State and Surface Reconstruction of Cu under CO ₂ Reduction Conditions from <i>In Situ</i> X-ray Characterization. Journal of the American Chemical Society, 2021, 143, 588-592.	6.6	172
74	Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. Nature Catalysis, 2019, 2, 702-708.	16.1	170
75	Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials. Advanced Energy Materials, 2014, 4, 1400739.	10.2	158
76	Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H ₂ O ₂ . Reaction Chemistry and Engineering, 2017, 2, 239-245.	1.9	157
77	Systematic Structure–Property Relationship Studies in Palladium-Catalyzed Methane Complete Combustion. ACS Catalysis, 2017, 7, 7810-7821.	5.5	151
78	Understanding the Origin of Highly Selective CO ₂ Electroreduction to CO on Ni,Nâ€doped Carbon Catalysts. Angewandte Chemie - International Edition, 2020, 59, 4043-4050.	7.2	148
79	Controlled Electrodeposition of Nanoparticulate Tungsten Oxide. Nano Letters, 2002, 2, 831-834.	4.5	147
80	Automated Electrochemical Synthesis and Photoelectrochemical Characterization of Zn1-xCoxO Thin Films for Solar Hydrogen Production. ACS Combinatorial Science, 2005, 7, 264-271.	3.3	147
81	A carbon-free, precious-metal-free, high-performance O2 electrode for regenerative fuel cells and metal–air batteries. Energy and Environmental Science, 2014, 7, 2017.	15.6	140
82	Aqueous Electrochemical Reduction of Carbon Dioxide and Carbon Monoxide into Methanol with Cobalt Phthalocyanine. Angewandte Chemie - International Edition, 2019, 58, 16172-16176.	7.2	137
83	Core–Shell Au@Metal-Oxide Nanoparticle Electrocatalysts for Enhanced Oxygen Evolution. Nano Letters, 2017, 17, 6040-6046.	4.5	135
84	Engineering Cobalt Phosphide (CoP) Thin Film Catalysts for Enhanced Hydrogen Evolution Activity on Silicon Photocathodes. Advanced Energy Materials, 2016, 6, 1501758.	10.2	134
85	Mercury chemistry on brominated activated carbon. Fuel, 2012, 99, 188-196.	3.4	125
86	Uniform Pt/Pd Bimetallic Nanocrystals Demonstrate Platinum Effect on Palladium Methane Combustion Activity and Stability. ACS Catalysis, 2017, 7, 4372-4380.	5.5	124
87	Electrochemical CO ₂ reduction on Au surfaces: mechanistic aspects regarding the formation of major and minor products. Physical Chemistry Chemical Physics, 2017, 19, 15856-15863.	1.3	124
88	Effects of Gold Substrates on the Intrinsic and Extrinsic Activity of High-Loading Nickel-Based Oxyhydroxide Oxygen Evolution Catalysts. ACS Catalysis, 2017, 7, 5399-5409.	5.5	120
89	Effect of Film Morphology and Thickness on Charge Transport in Ta ₃ N ₅ /Ta Photoanodes for Solar Water Splitting. Journal of Physical Chemistry C, 2012, 116, 15918-15924.	1.5	119
90	Influence of Atomic Surface Structure on the Activity of Ag for the Electrochemical Reduction of CO ₂ to CO. ACS Catalysis, 2019, 9, 4006-4014.	5.5	119

#	Article	IF	CITATIONS
91	Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2015, 3, 20185-20194.	5.2	116
92	Combinatorial Electrochemical Synthesis and Characterization of Tungsten-Based Mixed-Metal Oxides. ACS Combinatorial Science, 2002, 4, 563-568.	3.3	113
93	Structure, Composition, and Morphology of Photoelectrochemically Active TiO2-xNxThin Films Deposited by Reactive DC Magnetron Sputtering. Journal of Physical Chemistry B, 2004, 108, 20193-20198.	1.2	113
94	Acidic Oxygen Evolution Reaction Activity–Stability Relationships in Ru-Based Pyrochlores. ACS Catalysis, 2020, 10, 12182-12196.	5.5	111
95	Chemical and Phase Evolution of Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production. ACS Nano, 2016, 10, 624-632.	7.3	109
96	Trends in the Catalytic Activity of Hydrogen Evolution during CO ₂ Electroreduction on Transition Metals. ACS Catalysis, 2018, 8, 3035-3040.	5.5	107
97	Tuning the electronic structure of Ag-Pd alloys to enhance performance for alkaline oxygen reduction. Nature Communications, 2021, 12, 620.	5.8	107
98	Nickel–silver alloy electrocatalysts for hydrogen evolution and oxidation in an alkaline electrolyte. Physical Chemistry Chemical Physics, 2014, 16, 19250.	1.3	101
99	Tandem Core–Shell Si–Ta ₃ N ₅ Photoanodes for Photoelectrochemical Water Splitting. Nano Letters, 2016, 16, 7565-7572.	4.5	99
100	Combinatorial Electrochemical Synthesis and Screening of Mesoporous ZnO for Photocatalysis. Macromolecular Rapid Communications, 2004, 25, 297-301.	2.0	98
101	A Versatile Method for Ammonia Detection in a Range of Relevant Electrolytes via Direct Nuclear Magnetic Resonance Techniques. ACS Catalysis, 2019, 9, 5797-5802.	5.5	97
102	Absence of Oxidized Phases in Cu under CO Reduction Conditions. ACS Energy Letters, 2019, 4, 803-804.	8.8	97
103	Enhancement Effect of Noble Metals on Manganese Oxide for the Oxygen Evolution Reaction. Journal of Physical Chemistry Letters, 2015, 6, 4178-4183.	2.1	89
104	Operando Characterization of an Amorphous Molybdenum Sulfide Nanoparticle Catalyst during the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2014, 118, 29252-29259.	1.5	87
105	Bridging the Gap Between Bulk and Nanostructured Photoelectrodes: The Impact of Surface States on the Electrocatalytic and Photoelectrochemical Properties of MoS ₂ . Journal of Physical Chemistry C, 2013, 117, 9713-9722.	1.5	86
106	Growth of Pt Nanowires by Atomic Layer Deposition on Highly Ordered Pyrolytic Graphite. Nano Letters, 2013, 13, 457-463.	4.5	86
107	Selective reduction of CO to acetaldehyde with CuAg electrocatalysts. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12572-12575.	3.3	85
108	Impedance-based study of capacitive porous carbon electrodes with hierarchical and bimodal porosity. Journal of Power Sources, 2013, 241, 266-273.	4.0	82

#	Article	IF	CITATIONS
109	Robust and biocompatible catalysts for efficient hydrogen-driven microbial electrosynthesis. Communications Chemistry, 2019, 2, .	2.0	82
110	Precious Metal-Free Nickel Nitride Catalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2019, 11, 26863-26871.	4.0	81
111	A Preciousâ€Metalâ€Free Regenerative Fuel Cell for Storing Renewable Electricity. Advanced Energy Materials, 2013, 3, 1545-1550.	10.2	80
112	Design and Fabrication of a Precious Metalâ€Free Tandem Core–Shell p ⁺ n Si/Wâ€Doped BiVO ₄ Photoanode for Unassisted Water Splitting. Advanced Energy Materials, 2017, 7, 1701515.	10.2	79
113	Nearly Total Solar Absorption in Ultrathin Nanostructured Iron Oxide for Efficient Photoelectrochemical Water Splitting. ACS Photonics, 2014, 1, 235-240.	3.2	76
114	Investigating Catalyst–Support Interactions To Improve the Hydrogen Evolution Reaction Activity of Thiomolybdate [Mo ₃ S ₁₃] ^{2–} Nanoclusters. ACS Catalysis, 2017, 7, 7126-7130.	5.5	76
115	Guiding Electrochemical Carbon Dioxide Reduction toward Carbonyls Using Copper Silver Thin Films with Interphase Miscibility. ACS Energy Letters, 2018, 3, 2947-2955.	8.8	75
116	Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes. Journal of Physical Chemistry Letters, 2016, 7, 2044-2049.	2.1	74
117	Rapid flame doping of Co to WS ₂ for efficient hydrogen evolution. Energy and Environmental Science, 2018, 11, 2270-2277.	15.6	74
118	Highly Stable Molybdenum Disulfide Protected Silicon Photocathodes for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 36792-36798.	4.0	73
119	Electrocatalytic Activity of Goldâ^'Platinum Clusters for Low Temperature Fuel Cell Applications. Journal of Physical Chemistry C, 2009, 113, 5014-5024.	1.5	72
120	Active and Stable Ir@Pt Core–Shell Catalysts for Electrochemical Oxygen Reduction. ACS Energy Letters, 2017, 2, 244-249.	8.8	72
121	Simulating Linear Sweep Voltammetry from First-Principles: Application to Electrochemical Oxidation of Water on Pt(111) and Pt ₃ Ni(111). Journal of Physical Chemistry C, 2012, 116, 4698-4704.	1.5	71
122	A Highly Active Molybdenum Phosphide Catalyst for Methanol Synthesis from CO and CO ₂ . Angewandte Chemie - International Edition, 2018, 57, 15045-15050.	7.2	69
123	Ni5Ga3 catalysts for CO2 reduction to methanol: Exploring the role of Ga surface oxidation/reduction on catalytic activity. Applied Catalysis B: Environmental, 2020, 267, 118369.	10.8	68
124	Gas-Phase Catalysis by Micelle Derived Au Nanoparticles on Oxide Supports. Catalysis Letters, 2004, 95, 107-111.	1.4	67
125	A Combined Theoryâ€Experiment Analysis of the Surface Species in Lithiumâ€Mediated NH ₃ Electrosynthesis. ChemElectroChem, 2020, 7, 1542-1549.	1.7	67
126	Optoelectronic properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi mathvariant="normal">Ta <mml:mn>3 </mml:mn> </mml:mi </mml:msub> <mml:msub> <mml:mi mathvariant="normal">N <mml:mn>5 </mml:mn> </mml:mi </mml:msub> : A joint theoretical and experimental study. Physical Review B, 2014, 90, .</mml:math 	1.1	66

#	Article	IF	CITATIONS
127	Controlling the Structural and Optical Properties of Ta3N5 Films through Nitridation Temperature and the Nature of the Ta Metal. Chemistry of Materials, 2014, 26, 1576-1582.	3.2	66
128	High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration. Nano Research, 2017, 10, 1163-1177.	5.8	66
129	The Predominance of Hydrogen Evolution on Transition Metal Sulfides and Phosphides under CO ₂ Reduction Conditions: An Experimental and Theoretical Study. ACS Energy Letters, 2018, 3, 1450-1457.	8.8	66
130	High-Throughput Screening System for Catalytic Hydrogen-Producing Materials. ACS Combinatorial Science, 2002, 4, 17-22.	3.3	65
131	Building upon the Koutecky-Levich Equation for Evaluation of Next-Generation Oxygen Reduction Reaction Catalysts. Electrochimica Acta, 2017, 255, 99-108.	2.6	63
132	Extending the limits of Pt/C catalysts with passivation-gas-incorporated atomic layer deposition. Nature Catalysis, 2018, 1, 624-630.	16.1	63
133	Crystalline Strontium Iridate Particle Catalysts for Enhanced Oxygen Evolution in Acid. ACS Applied Energy Materials, 2019, 2, 5490-5498.	2.5	61
134	Nitride or Oxynitride? Elucidating the Composition–Activity Relationships in Molybdenum Nitride Electrocatalysts for the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 2946-2960.	3.2	57
135	Systematic Investigation of Iridium-Based Bimetallic Thin Film Catalysts for the Oxygen Evolution Reaction in Acidic Media. ACS Applied Materials & Interfaces, 2019, 11, 34059-34066.	4.0	56
136	Electro-Oxidation of Methane on Platinum under Ambient Conditions. ACS Catalysis, 2019, 9, 7578-7587.	5.5	53
137	Using pH Dependence to Understand Mechanisms in Electrochemical CO Reduction. ACS Catalysis, 2022, 12, 4344-4357.	5.5	53
138	An X-ray Photoelectron Spectroscopy Study of Surface Changes on Brominated and Sulfur-Treated Activated Carbon Sorbents during Mercury Capture: Performance of Pellet versus Fiber Sorbents. Environmental Science & Technology, 2013, 47, 13695-13701.	4.6	51
139	Polymer Electrolyte Membrane Electrolyzers Utilizing Nonâ€precious Moâ€based Hydrogen Evolution Catalysts. ChemSusChem, 2015, 8, 3512-3519.	3.6	51
140	Understanding the Influence of [EMIM]Cl on the Suppression of the Hydrogen Evolution Reaction on Transition Metal Electrodes. Langmuir, 2017, 33, 9464-9471.	1.6	50
141	Advanced manufacturing for electrosynthesis of fuels and chemicals from CO ₂ . Energy and Environmental Science, 2021, 14, 3064-3074.	15.6	50
142	Climbing the Activity Volcano: Core–Shell Ru@Pt Electrocatalysts for Oxygen Reduction. ChemElectroChem, 2014, 1, 67-71.	1.7	49
143	Evaluating the Case for Reduced Precious Metal Catalysts in Proton Exchange Membrane Electrolyzers. ACS Energy Letters, 2022, 7, 17-23.	8.8	49
144	Understanding the Origin of Highly Selective CO ₂ Electroreduction to CO on Ni,Nâ€doped Carbon Catalysts. Angewandte Chemie, 2020, 132, 4072-4079.	1.6	48

#	Article	IF	CITATIONS
145	Addressing the Stability Gap in Photoelectrochemistry: Molybdenum Disulfide Protective Catalysts for Tandem III–V Unassisted Solar Water Splitting. ACS Energy Letters, 2020, 5, 2631-2640.	8.8	48
146	Acid anion electrolyte effects on platinum for oxygen and hydrogen electrocatalysis. Communications Chemistry, 2022, 5, .	2.0	48
147	Direct Characterization of Atomically Dispersed Catalysts: Nitrogen oordinated Ni Sites in Carbonâ€Based Materials for CO ₂ Electroreduction. Advanced Energy Materials, 2020, 10, 2001836.	10.2	46
148	Simultaneous detection of electronic structure changes from two elements of a bifunctional catalyst using wavelength-dispersive X-ray emission spectroscopy and in situ electrochemistry. Physical Chemistry Chemical Physics, 2015, 17, 8901-8912.	1.3	45
149	Carbon Dioxide Electroreduction using a Silver–Zinc Alloy. Energy Technology, 2017, 5, 955-961.	1.8	45
150	Enhancing the connection between computation and experiments in electrocatalysis. Nature Catalysis, 2022, 5, 374-381.	16.1	45
151	Applications of ALD MnO to electrochemical water splitting. Physical Chemistry Chemical Physics, 2015, 17, 14003-14011.	1.3	44
152	Chemical Modifications of Ag Catalyst Surfaces with Imidazolium Ionomers Modulate H ₂ Evolution Rates during Electrochemical CO ₂ Reduction. Journal of the American Chemical Society, 2021, 143, 14712-14725.	6.6	44
153	A Universal Platform for Fabricating Organic Electrochemical Devices. Advanced Electronic Materials, 2018, 4, 1800090.	2.6	43
154	Bimetallic effects on Zn-Cu electrocatalysts enhance activity and selectivity for the conversion of CO2 to CO. Chem Catalysis, 2021, 1, 663-680.	2.9	42
155	Dynamics of Surface Exchange Reactions Between Au and Pt for HER and HOR. Journal of the Electrochemical Society, 2009, 156, B273.	1.3	41
156	Two-Dimensional Conductive Ni-HAB as a Catalyst for the Electrochemical Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2020, 12, 39074-39081.	4.0	41
157	Designing a Zn–Ag Catalyst Matrix and Electrolyzer System for CO ₂ Conversion to CO and Beyond. Advanced Materials, 2022, 34, e2103963.	11.1	41
158	Copper Silver Thin Films with Metastable Miscibility for Oxygen Reduction Electrocatalysis in Alkaline Electrolytes. ACS Applied Energy Materials, 2018, 1, 1990-1999.	2.5	40
159	Band Edge Engineering of Oxide Photoanodes for Photoelectrochemical Water Splitting: Integration of Subsurface Dipoles with Atomicâ€Scale Control. Advanced Energy Materials, 2016, 6, 1502154.	10.2	39
160	Operando investigation of Au-MnOx thin films with improved activity for the oxygen evolution reaction. Electrochimica Acta, 2017, 230, 22-28.	2.6	39
161	Mesoporous Ruthenium/Ruthenium Oxide Thin Films: Active Electrocatalysts for the Oxygen Evolution Reaction. ChemElectroChem, 2017, 4, 2480-2485.	1.7	39
162	Automated electrochemical synthesis and characterization of TiO2supported Au nanoparticle electrocatalysts. Measurement Science and Technology, 2005, 16, 54-59.	1.4	38

#	Article	IF	CITATIONS
163	Electrochemical flow cell enabling <i>operando</i> probing of electrocatalyst surfaces by X-ray spectroscopy and diffraction. Physical Chemistry Chemical Physics, 2019, 21, 5402-5408.	1.3	38
164	Using Microenvironments to Control Reactivity in CO2 Electrocatalysis. Joule, 2020, 4, 292-294.	11.7	35
165	Cyclic-Voltammetry-Based Solid-State Gas Sensor for Methane and Other VOC Detection. Analytical Chemistry, 2018, 90, 6102-6108.	3.2	33
166	Combinatorial electrochemical synthesis and screening of Pt-WO3 catalysts for electro-oxidation of methanol. Review of Scientific Instruments, 2005, 76, 062227.	0.6	30
167	Combined spectroscopy and microscopy of supported MoS2 nanoparticles. Surface Science, 2009, 603, 1182-1189.	0.8	30
168	Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability. Nanomaterials, 2018, 8, 38.	1.9	30
169	In Situ X-Ray Absorption Spectroscopy Disentangles the Roles of Copper and Silver in a Bimetallic Catalyst for the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 1819-1827.	3.2	30
170	Investigation of Surface Oxidation Processes on Manganese Oxide Electrocatalysts Using Electrochemical Methods and Ex Situ X-ray Photoelectron Spectroscopy. Journal of the Electrochemical Society, 2012, 159, H782-H786.	1.3	29
171	Automated synthesis and characterization of diverse libraries of macroporous alumina. Electrochimica Acta, 2001, 47, 553-557.	2.6	28
172	Transition Metal-Modified Zirconium Phosphate Electrocatalysts for the Oxygen Evolution Reaction. Catalysts, 2017, 7, 132.	1.6	27
173	Low-pressure methanol synthesis from CO2 over metal-promoted Ni-Ga intermetallic catalysts. Journal of CO2 Utilization, 2020, 39, 101151.	3.3	27
174	Mesoporous platinum nickel thin films with double gyroid morphology for the oxygen reduction reaction. Nano Energy, 2016, 29, 243-248.	8.2	26
175	Tuning Composition and Activity of Cobalt Titanium Oxide Catalysts for the Oxygen Evolution Reaction. Electrochimica Acta, 2016, 193, 240-245.	2.6	26
176	Probing the Effects of Acid Electrolyte Anions on Electrocatalyst Activity and Selectivity for the Oxygen Reduction Reaction. ChemElectroChem, 2021, 8, 2467-2478.	1.7	25
177	Parallel synthesis and characterization of photoelectrochemically and electrochromically active tungsten–molybdenum oxides. Chemical Communications, 2004, , 390-391.	2.2	24
178	Interfacial engineering of gallium indium phosphide photoelectrodes for hydrogen evolution with precious metal and non-precious metal based catalysts. Journal of Materials Chemistry A, 2019, 7, 16821-16832.	5.2	24
179	Elucidating the electronic structure of supported gold nanoparticles and its relevance to catalysis by means of hard X-ray photoelectron spectroscopy. Surface Science, 2016, 650, 24-33.	0.8	23
180	First-Row Transition Metal Antimonates for the Oxygen Reduction Reaction. ACS Nano, 2022, 16, 6334-6348.	7.3	23

#	Article	IF	CITATIONS
181	UV-Vis Spectroscopy. SpringerBriefs in Energy, 2013, , 49-62.	0.2	22
182	Engineering metal–metal oxide surfaces for high-performance oxygen reduction on Ag–Mn electrocatalysts. Energy and Environmental Science, 2022, 15, 1611-1629.	15.6	22
183	Aqueous Electrochemical Reduction of Carbon Dioxide and Carbon Monoxide into Methanol with Cobalt Phthalocyanine. Angewandte Chemie, 2019, 131, 16318-16322.	1.6	21
184	Transition Metal-Modified Exfoliated Zirconium Phosphate as an Electrocatalyst for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 3561-3567.	2.5	21
185	Isolating the Electrocatalytic Activity of a Confined NiFe Motif within Zirconium Phosphate. Advanced Energy Materials, 2021, 11, 2003545.	10.2	21
186	Bridging Thermal Catalysis and Electrocatalysis: Catalyzing CO ₂ Conversion with Carbonâ€Based Materials. Angewandte Chemie - International Edition, 2021, 60, 17472-17480.	7.2	21
187	Nanostructured Manganese Oxide Supported onto Particulate Glassy Carbon as an Active and Stable Oxygen Reduction Catalyst in Alkaline-Based Fuel Cells. Journal of the Electrochemical Society, 2014, 161, D3105-D3112.	1.3	20
188	Morphology control of metal-modified zirconium phosphate support structures for the oxygen evolution reaction. Dalton Transactions, 2020, 49, 3892-3900.	1.6	20
189	Lithium-Mediated Electrochemical Nitrogen Reduction: Tracking Electrode–Electrolyte Interfaces via Time-Resolved Neutron Reflectometry. ACS Energy Letters, 2022, 7, 1939-1946.	8.8	20
190	Synthesis of Tungsten Oxide on Copper Surfaces by Electroless Deposition. Chemistry of Materials, 2003, 15, 3411-3413.	3.2	19
191	The Materials Research Platform: Defining the Requirements from User Stories. Matter, 2019, 1, 1433-1438.	5.0	19
192	Nanostructuring Strategies To Increase the Photoelectrochemical Water Splitting Activity of Silicon Photocathodes. ACS Applied Nano Materials, 2019, 2, 6-11.	2.4	19
193	Mapping Photoelectrochemical Current Distribution at Nanoscale Dimensions on Morphologically Controlled BiVO ₄ . Journal of Physical Chemistry Letters, 2015, 6, 3702-3707.	2.1	18
194	Transition Metal Arsenide Catalysts for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2019, 123, 24007-24012.	1.5	18
195	Nanosized Zirconium Porphyrinic Metal–Organic Frameworks that Catalyze the Oxygen Reduction Reaction in Acid. Small Methods, 2020, 4, 2000085.	4.6	18
196	The Role of Heat Treatment in Enhanced Activity of Manganese Oxides for the Oxygen Reduction and Evolution Reactions. ECS Transactions, 2013, 58, 735-750.	0.3	17
197	Molybdenum Disulfide Catalytic Coatings via Atomic Layer Deposition for Solar Hydrogen Production from Copper Gallium Diselenide Photocathodes. ACS Applied Energy Materials, 2019, 2, 1060-1066.	2.5	17
198	Identifying and Tuning the In Situ Oxygen-Rich Surface of Molybdenum Nitride Electrocatalysts for Oxygen Reduction. ACS Applied Energy Materials, 2020, 3, 12433-12446.	2.5	17

Thomas F Jaramillo

#	Article	IF	CITATIONS
199	Characterization of a Dynamic Y ₂ Ir ₂ O ₇ Catalyst during the Oxygen Evolution Reaction in Acid. Journal of Physical Chemistry C, 2022, 126, 1751-1760.	1.5	17
200	Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. , 2010, , 280-284.		16
201	Understanding Degradation Mechanisms in SrIrO ₃ Oxygen Evolution Electrocatalysts: Chemical and Structural Microscopy at the Nanoscale. Advanced Functional Materials, 2021, 31, 2101542.	7.8	16
202	Guiding the Catalytic Properties of Copper for Electrochemical CO ₂ Reduction by Metal Atom Decoration. ACS Applied Materials & Interfaces, 2021, 13, 52044-52054.	4.0	16
203	Synthesis of Au nanoclusters supported upon a TiO2 nanotube array. Journal of Materials Research, 2005, 20, 1093-1096.	1.2	15
204	High Surface Area Transparent Conducting Oxide Electrodes with a Customizable Device Architecture. Chemistry of Materials, 2014, 26, 958-964.	3.2	15
205	A Highly Active Molybdenum Phosphide Catalyst for Methanol Synthesis from CO and CO ₂ . Angewandte Chemie, 2018, 130, 15265-15270.	1.6	15
206	Vaporâ€Fed Electrolyzers for Carbon Dioxide Reduction Using Tandem Electrocatalysts: Cuprous Oxide Coupled with Nickelâ€Coordinated Nitrogenâ€Doped Carbon. Advanced Functional Materials, 2022, 32, .	7.8	15
207	CoTiO _x Catalysts for the Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2015, 162, H841-H846.	1.3	14
208	Improving the Photoelectrochemical Performance of Hematite by Employing a High Surface Area Scaffold and Engineering Solid–Solid Interfaces. Advanced Materials Interfaces, 2016, 3, 1500626.	1.9	14
209	Modified atomic layer deposition of MoS2 thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	14
210	Cobalt porphyrin intercalation into zirconium phosphate layers for electrochemical water oxidation. Sustainable Energy and Fuels, 2021, 5, 430-437.	2.5	14
211	Improving intrinsic oxygen reduction activity and stability: Atomic layer deposition preparation of platinum-titanium alloy catalysts. Applied Catalysis B: Environmental, 2022, 300, 120741.	10.8	14
212	Demonstration of photoreactor platform for on-sun unassisted photoelectrochemical hydrogen generation with tandem III–V photoelectrodes. Chem Catalysis, 2022, 2, 195-209.	2.9	14
213	Development of Molybdenum Phosphide Catalysts for Higher Alcohol Synthesis from Syngas by Exploiting Support and Promoter Effects. Energy Technology, 2019, 7, 1801102.	1.8	12
214	A Spin Coating Method To Deposit Iridium-Based Catalysts onto Silicon for Water Oxidation Photoanodes. ACS Applied Materials & amp; Interfaces, 2020, 12, 5901-5908.	4.0	12
215	Effects of Ta ₃ N ₅ Morphology and Composition on the Performance of Siâ€Ta ₃ NÂ ₅ Photoanodes. Solar Rrl, 2017, 1, 1700121.	3.1	11
216	Surface Engineering of 3D Gas Diffusion Electrodes for Highâ€Performance H ₂ Production with Nonprecious Metal Catalysts. Advanced Energy Materials, 2019, 9, 1901824.	10.2	11

#	Article	IF	CITATIONS
217	Dynamics and Hysteresis of Hydrogen Intercalation and Deintercalation in Palladium Electrodes: A Multimodal <i>In Situ</i> X-ray Diffraction, Coulometry, and Computational Study. Chemistry of Materials, 2021, 33, 5872-5884.	3.2	11
218	Understanding Selectivity in CO2 Hydrogenation to Methanol for MoP Nanoparticle Catalysts Using In Situ Techniques. Catalysts, 2021, 11, 143.	1.6	11
219	Methods—A Practical Approach to the Reversible Hydrogen Electrode Scale. Journal of the Electrochemical Society, 2022, 169, 066505.	1.3	11
220	Electrooxidation of Alcohols with Electrode-Supported Transfer Hydrogenation Catalysts. ACS Catalysis, 2015, 5, 7343-7349.	5.5	10
221	Direct Integration of Strainedâ€Pt Catalysts into Protonâ€Exchangeâ€Membrane Fuel Cells with Atomic Layer Deposition. Advanced Materials, 2021, 33, e2007885.	11.1	10
222	Bottom-Up Fabrication of Oxygen Reduction Electrodes with Atomic Layer Deposition for High-Power-Density PEMFCs. Cell Reports Physical Science, 2021, 2, 100297.	2.8	10
223	Flat-Band Potential Techniques. SpringerBriefs in Energy, 2013, , 63-85.	0.2	10
224	Polyol Synthesis of Cobalt–Copper Alloy Catalysts for Higher Alcohol Synthesis from Syngas. Catalysis Letters, 2017, 147, 2352-2359.	1.4	10
225	Incident Photon-to-Current Efficiency and Photocurrent Spectroscopy. SpringerBriefs in Energy, 2013, , 87-97.	0.2	9
226	Top-down fabrication of fluorine-doped tin oxide nanopillar substrates for solar water splitting. RSC Advances, 2017, 7, 28350-28357.	1.7	9
227	Impact of Nanostructuring on the Photoelectrochemical Performance of Si/Ta ₃ N ₅ Nanowire Photoanodes. Journal of Physical Chemistry C, 2017, 121, 27295-27302.	1.5	9
228	A cyclic electrochemical strategy to produce acetylene from CO ₂ , CH ₄ , or alternative carbon sources. Sustainable Energy and Fuels, 2020, 4, 2752-2759.	2.5	9
229	CO as a Probe Molecule to Study Surface Adsorbates during Electrochemical Oxidation of Propene. ChemElectroChem, 2021, 8, 250-256.	1.7	9
230	Phosphate-passivated mordenite for tandem-catalytic conversion of syngas to ethanol or acetic acid. Journal of Catalysis, 2021, 399, 132-141.	3.1	9
231	Nanostructuring MoS 2 for photoelectrochemical water splitting. , 2010, , .		7
232	Platinum and hybrid polyaniline–platinum surfaces for the electrocatalytic reduction of CO2. MRS Communications, 2015, 5, 319-325.	0.8	7
233	Tungsten oxide-coated copper gallium selenide sustains long-term solar hydrogen evolution. Sustainable Energy and Fuels, 2021, 5, 384-390.	2.5	7
234	Ex Situ Spectroscopy Study of Manganese Oxide Catalytic Surfaces under Reaction Conditions Relevant to Oxygen Reduction and Oxygen Evolution. ECS Transactions, 2011, 41, 1701-1707.	0.3	6

#	Article	IF	CITATIONS
235	Microfabricated electrochemical gas sensor. Micro and Nano Letters, 2016, 11, 798-802.	0.6	6
236	A refraction correction for buried interfaces applied to <i>in situ</i> grazing-incidence X-ray diffraction studies on Pd electrodes. Journal of Synchrotron Radiation, 2021, 28, 919-923.	1.0	6
237	Electrolyte-Guided Design of Electroreductive CO Coupling on Copper Surfaces. ACS Applied Energy Materials, 2021, 4, 8201-8210.	2.5	6
238	Engineering Surface Architectures for Improved Durability in III–V Photocathodes. ACS Applied Materials & Interfaces, 2022, 14, 20385-20392.	4.0	6
239	Alloyed Pt–Zn Oxygen Reduction Catalysts for Proton Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2022, 5, 8282-8291.	2.5	6
240	Low-Voltage Electrodeposition of Fullerol Thin Films from Aqueous Solutions. Journal of the Electrochemical Society, 2006, 153, C483.	1.3	5
241	Effects of a New Electrochemical Cleaning Protocol on Ru@Pt Core-Shell ORR Catalysts. ECS Transactions, 2013, 58, 929-936.	0.3	5
242	Readily Constructed Glass Piston Pump for Gas Recirculation. ACS Omega, 2020, 5, 16455-16459.	1.6	5
243	Water Splitting Electrocatalysis within Layered Inorganic Nanomaterials. , 2020, , .		3
244	Automated Electrochemical Synthesis and Photoelectrochemical Characterization of Zn1-xCoxO Thin Films for Solar Hydrogen Production ChemInform, 2005, 36, no.	0.1	2
245	Cyclic Voltammograms from First Principles. ECS Transactions, 2007, 11, 759-768.	0.3	2
246	High Resolution Transmission Electron Microscopy Study on the Degradation of IrO <i>_x</i> /SrIrO ₃ as an Oxygen Evolution Catalyst. Microscopy and Microanalysis, 2020, 26, 3168-3169.	0.2	2
247	A Combined Theoryâ€Experiment Analysis of the Surface Species in Lithiumâ€Mediated NH ₃ Electrosynthesis. ChemElectroChem, 2020, 7, 1513-1513.	1.7	2
248	PEC Characterization Flowchart. SpringerBriefs in Energy, 2013, , 45-47.	0.2	2
249	Experimental Considerations. SpringerBriefs in Energy, 2013, , 17-44.	0.2	2
250	In Situ Studies of the Formation of MoP Catalysts and Their Structure under Reaction Conditions for Higher Alcohol Synthesis: The Role of Promoters and Mesoporous Supports. Journal of Physical Chemistry C, 2022, 126, 5575-5583.	1.5	2
251	Effect of Temperature Treatment on CoTiOx Catalyst for the Oxygen Evolution Reaction. ECS Transactions, 2013, 58, 285-291.	0.3	1
252	Photon Management for Near-Total Solar Absorption in Hematite Photoanodes. Materials Research Society Symposia Proceedings, 2014, 1670, 8.	0.1	1

#	Article	IF	CITATIONS
253	Transmission Electron Microscopy (TEM) Studies on Nickel and Molybdenum Nitrides as Oxygen Reduction Reaction Catalysts. Microscopy and Microanalysis, 2019, 25, 2072-2073.	0.2	1
254	Bridging Thermal Catalysis and Electrocatalysis: Catalyzing CO 2 Conversion with Carbonâ€Based Materials. Angewandte Chemie, 2021, 133, 17613-17621.	1.6	1
255	Advanced Manufacturing for Electrosynthesis of Fuels and Chemicals from CO2. ECS Meeting Abstracts, 2021, MA2021-02, 815-815.	0.0	1
256	Parallel Synthesis and Characterization of Photoelectrochemically and Electrochemically Active Tungsten—Molybdenum Oxides ChemInform, 2004, 35, no.	0.1	0
257	Monolithic III–V nanowire PV for photoelectrochemical hydrogen generation. , 2010, , .		0
258	Perfect Sunlight Absorption in Iron Oxide Photoanode. , 2014, , .		0
259	Photocatalysis: Design and Fabrication of a Precious Metalâ€Free Tandem Core–Shell p ⁺ n Si/Wâ€Doped BiVO ₄ Photoanode for Unassisted Water Splitting (Adv. Energy Mater. 22/2017). Advanced Energy Materials, 2017, 7, .	10.2	0
260	Earth-Abundant Electrocatalysts for the Oxygen Evolution Reaction of Water Splitting Using Nanostructured Layered Inorganic Materials. ECS Meeting Abstracts, 2021, MA2021-01, 1827-1827.	0.0	0
261	Prospects for In Situ TEM on Electrocatalyst Materials for Sustainable Energy Technologies. Microscopy and Microanalysis, 2021, 27, 44-45.	0.2	0
262	Nanostructured MoS2 for Solar Hydrogen Production. ECS Meeting Abstracts, 2010, , .	0.0	0
263	2-Electrode Short Circuit and j–V. SpringerBriefs in Energy, 2013, , 99-103.	0.2	0
264	Near Perfect Sunlight Absorption in 20nm-Thick Iron Oxide Photoanode Based on Core-Shell Nanocone Structure. , 2013, , .		0
265	Stability Testing. SpringerBriefs in Energy, 2013, , 115-118.	0.2	0
266	Microenvironment Effects on Electrocatalytic Oxygen Reduction: The Role of Acid Electrolyte Anions. ECS Meeting Abstracts, 2021, MA2021-02, 1422-1422.	0.0	0
267	Development of Reliable Methods and Protocols for Electrocatalytic N2 Reduction. ECS Meeting Abstracts, 2020, MA2020-02, 2860-2860.	0.0	0
268	Design and on-Sun Testing of Tandem III-V Photoelectrochemical Water-Splitting Systems. ECS Meeting Abstracts, 2020, MA2020-02, 3051-3051.	0.0	0
269	Enhanced Oxygen Reduction Activity on Silver-Palladium Alloyed Thin Film Electrocatalysts in Alkaline Media. ECS Meeting Abstracts, 2020, MA2020-02, 2397-2397.	0.0	0
270	Use of in Situ Synchrotron Techniques to Probe the Oxidized Surface of Molybdenum Nitride Oxygen Reduction Electrocatalysis. ECS Meeting Abstracts, 2020, MA2020-02, 3157-3157.	0.0	0

#	Article	IF	CITATIONS
271	Electrodialysis and Nitrate Reduction to Synthesize and Recover Ammonia from Wastewaters. ECS Meeting Abstracts, 2020, MA2020-02, 1546-1546.	0.0	0
272	(Invited) Electrocatalysts for Water-Splitting: Design, Development, and Integration Into Devices for Water Electrolysis and Solar Photoelectrochemical (PEC) Hydrogen Production. ECS Meeting Abstracts, 2021, MA2021-02, 1325-1325.	0.0	0
273	Incorporating ALD Based Pt Alloy Catalysts into Gas Diffusion Electrodes for Proton Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2022, MA2022-01, 1423-1423.	0.0	Ο
274	Evaluating Bipolar Membrane Electrolyzers for Green Hydrogen Production from Impure Water Sources. ECS Meeting Abstracts, 2022, MA2022-01, 2461-2461.	0.0	0
275	Acid Anion Electrolyte Effects on Platinum for Oxygen and Hydrogen Electrocatalysis. ECS Meeting Abstracts, 2022, MA2022-01, 2056-2056.	0.0	0