Thomas F Jaramillo

List of Publications by Citations

Source: https://exaly.com/author-pdf/2346625/thomas-f-jaramillo-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60,701 87 246 252 g-index h-index citations papers 8.21 284 71,578 12.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
252	Combining theory and experiment in electrocatalysis: Insights into materials design. <i>Science</i> , 2017 , 355,	33.3	5239
251	Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. <i>Science</i> , 2007 , 317, 100-2	33.3	4319
250	Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. <i>Journal of the American Chemical Society</i> , 2013 , 135, 16977-87	16.4	3926
249	Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. <i>Nature Materials</i> , 2006 , 5, 909-13	27	2624
248	Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. <i>Nature Materials</i> , 2012 , 11, 963-9	27	2503
247	Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4347-57	16.4	2386
246	Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces. <i>ChemCatChem</i> , 2011 , 3, 1159-1165	5.2	2321
245	Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. <i>Nature Chemistry</i> , 2009 , 1, 552-6	17.6	2287
244	New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy and Environmental Science, 2012 , 5, 7050	35.4	1789
243	A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. <i>Journal of the American Chemical Society</i> , 2010 , 132, 13612-4	16.4	1271
242	Progress and Perspectives of Electrochemical CO Reduction on Copper in Aqueous Electrolyte. <i>Chemical Reviews</i> , 2019 , 119, 7610-7672	68.1	1244
241	A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. <i>Science</i> , 2016 , 353, 1011-1014	33.3	1094
240	Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials. <i>ACS Catalysis</i> , 2014 , 4, 3957-3971	13.1	1086
239	Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. <i>Nano Letters</i> , 2011 , 11, 4168-75	11.5	969
238	Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. <i>Journal of the American Chemical Society</i> , 2014 , 136, 14107-13	16.4	968
237	Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. <i>Journal of Materials Research</i> , 2010 , 25, 3-16	2.5	893
236	Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. <i>Energy and Environmental Science</i> , 2013 , 6, 1983	35.4	868

235	Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity. <i>ACS Catalysis</i> , 2012 , 2, 1916-1923	13.1	859
234	Materials for solar fuels and chemicals. <i>Nature Materials</i> , 2016 , 16, 70-81	27	846
233	Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 14433-7	16.4	78o
232	Branched TiOlhanorods for photoelectrochemical hydrogen production. <i>Nano Letters</i> , 2011 , 11, 4978-84	411.5	760
231	Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution. <i>ACS Energy Letters</i> , 2016 , 1, 589-594	20.1	75 ²
230	What would it take for renewably powered electrosynthesis to displace petrochemical processes?. <i>Science</i> , 2019 , 364,	33.3	749
229	Hydrogen evolution on nano-particulate transition metal sulfides. <i>Faraday Discussions</i> , 2008 , 140, 219-31; discussion 297-317	3.6	672
228	Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. <i>Energy and Environmental Science</i> , 2015 , 8, 3022-3029	35.4	671
227	High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. <i>Nature Catalysis</i> , 2018 , 1, 156-162	36.5	632
226	A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. <i>Nature</i> , 2019 , 570, 504-508	50.4	617
225	Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2- clusters. <i>Nature Chemistry</i> , 2014 , 6, 248-53	17.6	602
224	Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. <i>RSC Advances</i> , 2012 , 2, 7933	3.7	485
223	Electrochemical Ammonia SynthesisThe Selectivity Challenge. ACS Catalysis, 2017, 7, 706-709	13.1	442
222	Plasmon enhanced solar-to-fuel energy conversion. <i>Nano Letters</i> , 2011 , 11, 3440-6	11.5	428
221	Enhancement of Photocatalytic and Electrochromic Properties of Electrochemically Fabricated Mesoporous WO3 Thin Films. <i>Advanced Materials</i> , 2003 , 15, 1269-1273	24	425
220	In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. <i>Journal of the American Chemical Society</i> , 2013 , 135, 8525-34	16.4	419
219	Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30. <i>Nature Communications</i> , 2016 , 7, 13237	17.4	407
218	Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes. <i>ACS Catalysis</i> , 2017 , 7, 4822-4827	13.1	402

217	Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide. Journal of the American Chemical Society, 2017 , 139, 11277-11287	16.4	381
216	A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. <i>Solar Energy Materials and Solar Cells</i> , 2003 , 77, 229-237	6.4	376
215	Insights into the electrocatalytic reduction of COIbn metallic silver surfaces. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 13814-9	3.6	368
214	Gold-supported cerium-doped NiOx catalysts for water oxidation. <i>Nature Energy</i> , 2016 , 1,	62.3	366
213	Catalytic activity of supported Au nanoparticles deposited from block copolymer micelles. <i>Journal of the American Chemical Society</i> , 2003 , 125, 7148-9	16.4	362
212	Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3068-3076	13	344
211	Electrochemical CO Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity. <i>Journal of the American Chemical Society</i> , 2017 , 139, 15848-15857	16.4	331
210	Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. <i>Nature Catalysis</i> , 2018 , 1, 764-771	36.5	291
209	Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 14010-22	3.6	270
208	Active MnOx Electrocatalysts Prepared by Atomic Layer Deposition for Oxygen Evolution and Oxygen Reduction Reactions. <i>Advanced Energy Materials</i> , 2012 , 2, 1269-1277	21.8	269
207	Gas-Diffusion Electrodes for Carbon Dioxide Reduction: A New Paradigm. <i>ACS Energy Letters</i> , 2019 , 4, 317-324	20.1	238
206	Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure. <i>Energy and Environmental Science</i> , 2017 , 10, 1621-1630	35.4	236
205	Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal Active Site Motifs for CO2 Reduction. <i>ACS Catalysis</i> , 2017 , 7, 6600-6608	13.1	224
204	Engineering Cu surfaces for the electrocatalytic conversion of CO: Controlling selectivity toward oxygenates and hydrocarbons. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 5918-5923	11.5	215
203	pH effects on the electrochemical reduction of CO towards C products on stepped copper. <i>Nature Communications</i> , 2019 , 10, 32	17.4	207
202	Thin Films of Sodium Birnessite-Type MnO2: Optical Properties, Electronic Band Structure, and Solar Photoelectrochemistry. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 11830-11838	3.8	204
201	Steady state oxygen reduction and cyclic voltammetry. <i>Faraday Discussions</i> , 2008 , 140, 337-46; discussion 417-37	3.6	203
200	Hydrogen Evolution on Supported Incomplete Cubane-type [Mo3S4]4+ Electrocatalysts. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 17492-17498	3.8	200

(2014-2017)

199	Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide. <i>Nature Communications</i> , 2017 , 8, 701	17.4	193
198	Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide. <i>Journal of the American Chemical Society</i> , 2018 , 140, 7851-7859	16.4	184
197	Meso-structured platinum thin films: active and stable electrocatalysts for the oxygen reduction reaction. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7758-65	16.4	183
196	Synthesis and characterization of Pt-WO3 as methanol oxidation catalysts for fuel cells. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 22958-66	3.4	183
195	Understanding interactions between manganese oxide and gold that lead to enhanced activity for electrocatalytic water oxidation. <i>Journal of the American Chemical Society</i> , 2014 , 136, 4920-6	16.4	182
194	Size- and support-dependent electronic and catalytic properties of Au0/Au3+ nanoparticles synthesized from block copolymer micelles. <i>Journal of the American Chemical Society</i> , 2003 , 125, 12928-	.346.4	180
193	New cubic perovskites for one- and two-photon water splitting using the computational materials repository. <i>Energy and Environmental Science</i> , 2012 , 5, 9034	35.4	178
192	Electrochemical Carbon Monoxide Reduction on Polycrystalline Copper: Effects of Potential, Pressure, and pH on Selectivity toward Multicarbon and Oxygenated Products. <i>ACS Catalysis</i> , 2018 , 8, 7445-7454	13.1	175
191	Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research. <i>ChemSusChem</i> , 2014 , 7, 1372-85	8.3	168
190	Mn3O4 Supported on Glassy Carbon: An Active Non-Precious Metal Catalyst for the Oxygen Reduction Reaction. <i>ACS Catalysis</i> , 2012 , 2, 2687-2694	13.1	165
189	Standards and Protocols for Data Acquisition and Reporting for Studies of the Electrochemical Reduction of Carbon Dioxide. <i>ACS Catalysis</i> , 2018 , 8, 6560-6570	13.1	160
188	Cyclic voltammograms for H on Pt(111) and Pt(100) from first principles. <i>Physical Review Letters</i> , 2007 , 99, 126101	7.4	159
187	Substrate selection for fundamental studies of electrocatalysts and photoelectrodes: inert potential windows in acidic, neutral, and basic electrolyte. <i>PLoS ONE</i> , 2014 , 9, e107942	3.7	157
186	Defective Carbon-Based Materials for the Electrochemical Synthesis of Hydrogen Peroxide. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 311-317	8.3	153
185	Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials. <i>Advanced Energy Materials</i> , 2014 , 4, 1400739	21.8	145
184	Controlled Electrodeposition of Nanoparticulate Tungsten Oxide. <i>Nano Letters</i> , 2002 , 2, 831-834	11.5	135
183	Automated electrochemical synthesis and photoelectrochemical characterization of Zn1-xCo(x)O thin films for solar hydrogen production. <i>ACS Combinatorial Science</i> , 2005 , 7, 264-71		134
182	A carbon-free, precious-metal-free, high-performance O2 electrode for regenerative fuel cells and metal Bir batteries. <i>Energy and Environmental Science</i> , 2014 , 7, 2017	35.4	121

181	Engineering Cobalt Phosphide (CoP) Thin Film Catalysts for Enhanced Hydrogen Evolution Activity on Silicon Photocathodes. <i>Advanced Energy Materials</i> , 2016 , 6, 1501758	21.8	115
180	Systematic Structure P roperty Relationship Studies in Palladium-Catalyzed Methane Complete Combustion. <i>ACS Catalysis</i> , 2017 , 7, 7810-7821	13.1	110
179	Mercury chemistry on brominated activated carbon. Fuel, 2012, 99, 188-196	7.1	110
178	Structure, Composition, and Morphology of Photoelectrochemically Active TiO2-xNx Thin Films Deposited by Reactive DC Magnetron Sputtering. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 20193-201	19 8 4	107
177	Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold. <i>Nature Communications</i> , 2020 , 11, 33	17.4	107
176	Effect of Film Morphology and Thickness on Charge Transport in Ta3N5/Ta Photoanodes for Solar Water Splitting. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 15918-15924	3.8	106
175	Revealing the Synergy between Oxide and Alloy Phases on the Performance of Bimetallic In P d Catalysts for CO2 Hydrogenation to Methanol. <i>ACS Catalysis</i> , 2019 , 9, 3399-3412	13.1	105
174	Core-Shell Au@Metal-Oxide Nanoparticle Electrocatalysts for Enhanced Oxygen Evolution. <i>Nano Letters</i> , 2017 , 17, 6040-6046	11.5	104
173	Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO2 reduction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20185-20194	13	101
172	Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2. <i>Reaction Chemistry and Engineering</i> , 2017 , 2, 239-245	4.9	100
171	Molybdenum Phosphosulfide: An Active, Acid-Stable, Earth-Abundant Catalyst for the Hydrogen Evolution Reaction. <i>Angewandte Chemie</i> , 2014 , 126, 14661-14665	3.6	96
170	Combinatorial electrochemical synthesis and characterization of tungsten-based mixed-metal oxides. <i>ACS Combinatorial Science</i> , 2002 , 4, 563-8		96
169	Electrochemical CO reduction on Au surfaces: mechanistic aspects regarding the formation of major and minor products. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 15856-15863	3.6	89
168	Electrolyte Engineering for Efficient Electrochemical Nitrate Reduction to Ammonia on a Titanium Electrode. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 2672-2681	8.3	88
167	Effects of Gold Substrates on the Intrinsic and Extrinsic Activity of High-Loading Nickel-Based Oxyhydroxide Oxygen Evolution Catalysts. <i>ACS Catalysis</i> , 2017 , 7, 5399-5409	13.1	88
166	Uniform Pt/Pd Bimetallic Nanocrystals Demonstrate Platinum Effect on Palladium Methane Combustion Activity and Stability. <i>ACS Catalysis</i> , 2017 , 7, 4372-4380	13.1	87
165	A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. <i>Nature Nanotechnology</i> , 2019 , 14, 1071-1074	28.7	87
164	Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. <i>Nature Catalysis</i> , 2019 , 2, 702-708	36.5	86

(2016-2016)

163	Tandem Core-Shell Si-TaN Photoanodes for Photoelectrochemical Water Splitting. <i>Nano Letters</i> , 2016 , 16, 7565-7572	11.5	86	
162	Chemical and Phase Evolution of Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production. <i>ACS Nano</i> , 2016 , 10, 624-32	16.7	86	
161	Combinatorial Electrochemical Synthesis and Screening of Mesoporous ZnO for Photocatalysis. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 297-301	4.8	86	
160	Understanding the Origin of Highly Selective CO Electroreduction to CO on Ni,N-doped Carbon Catalysts. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4043-4050	16.4	85	
159	Aqueous Electrochemical Reduction of Carbon Dioxide and Carbon Monoxide into Methanol with Cobalt Phthalocyanine. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 16172-16176	16.4	81	
158	Enhancement Effect of Noble Metals on Manganese Oxide for the Oxygen Evolution Reaction. Journal of Physical Chemistry Letters, 2015 , 6, 4178-83	6.4	79	
157	Growth of Pt nanowires by atomic layer deposition on highly ordered pyrolytic graphite. <i>Nano Letters</i> , 2013 , 13, 457-63	11.5	78	
156	Nickel-silver alloy electrocatalysts for hydrogen evolution and oxidation in an alkaline electrolyte. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 19250-7	3.6	74	
155	Bridging the Gap Between Bulk and Nanostructured Photoelectrodes: The Impact of Surface States on the Electrocatalytic and Photoelectrochemical Properties of MoS2. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 9713-9722	3.8	74	
154	Influence of Atomic Surface Structure on the Activity of Ag for the Electrochemical Reduction of CO2 to CO. <i>ACS Catalysis</i> , 2019 , 9, 4006-4014	13.1	72	
153	Nearly Total Solar Absorption in Ultrathin Nanostructured Iron Oxide for Efficient Photoelectrochemical Water Splitting. <i>ACS Photonics</i> , 2014 , 1, 235-240	6.3	71	
152	Trends in the Catalytic Activity of Hydrogen Evolution during CO2 Electroreduction on Transition Metals. <i>ACS Catalysis</i> , 2018 , 8, 3035-3040	13.1	67	
151	Impedance-based study of capacitive porous carbon electrodes with hierarchical and bimodal porosity. <i>Journal of Power Sources</i> , 2013 , 241, 266-273	8.9	67	
150	Operando Characterization of an Amorphous Molybdenum Sulfide Nanoparticle Catalyst during the Hydrogen Evolution Reaction. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 29252-29259	3.8	66	
149	Electrocatalytic Activity of Gold P latinum Clusters for Low Temperature Fuel Cell Applications. Journal of Physical Chemistry C, 2009 , 113, 5014-5024	3.8	66	
148	A Precious-Metal-Free Regenerative Fuel Cell for Storing Renewable Electricity. <i>Advanced Energy Materials</i> , 2013 , 3, 1545-1550	21.8	65	
147	Simulating Linear Sweep Voltammetry from First-Principles: Application to Electrochemical Oxidation of Water on Pt(111) and Pt3Ni(111). <i>Journal of Physical Chemistry C</i> , 2012 , 116, 4698-4704	3.8	64	
146	Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 2044-9	6.4	64	

145	Absence of Oxidized Phases in Cu under CO Reduction Conditions. ACS Energy Letters, 2019, 4, 803-804	20.1	64
144	Oxidation State and Surface Reconstruction of Cu under CO Reduction Conditions from X-ray Characterization. <i>Journal of the American Chemical Society</i> , 2021 , 143, 588-592	16.4	62
143	Highly Stable Molybdenum Disulfide Protected Silicon Photocathodes for Photoelectrochemical Water Splitting. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 36792-36798	9.5	60
142	Optoelectronic properties of Ta3N5: A joint theoretical and experimental study. <i>Physical Review B</i> , 2014 , 90,	3.3	60
141	High-throughput screening system for catalytic hydrogen-producing materials. <i>ACS Combinatorial Science</i> , 2002 , 4, 17-22		59
140	Gas-Phase Catalysis by Micelle Derived Au Nanoparticles on Oxide Supports. <i>Catalysis Letters</i> , 2004 , 95, 107-111	2.8	58
139	Controlling the Structural and Optical Properties of Ta3N5 Films through Nitridation Temperature and the Nature of the Ta Metal. <i>Chemistry of Materials</i> , 2014 , 26, 1576-1582	9.6	57
138	Investigating CatalystBupport Interactions To Improve the Hydrogen Evolution Reaction Activity of Thiomolybdate [Mo3S13]2[Nanoclusters. <i>ACS Catalysis</i> , 2017 , 7, 7126-7130	13.1	55
137	A Versatile Method for Ammonia Detection in a Range of Relevant Electrolytes via Direct Nuclear Magnetic Resonance Techniques. <i>ACS Catalysis</i> , 2019 , 9, 5797-5802	13.1	54
136	Design and Fabrication of a Precious Metal-Free Tandem CoreBhell p+n Si/W-Doped BiVO4 Photoanode for Unassisted Water Splitting. <i>Advanced Energy Materials</i> , 2017 , 7, 1701515	21.8	54
135	Active and Stable [email[protected] CoreBhell Catalysts for Electrochemical Oxygen Reduction. <i>ACS Energy Letters</i> , 2017 , 2, 244-249	20.1	52
134	High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration. <i>Nano Research</i> , 2017 , 10, 1163-1177	10	50
133	The Predominance of Hydrogen Evolution on Transition Metal Sulfides and Phosphides under CO2 Reduction Conditions: An Experimental and Theoretical Study. <i>ACS Energy Letters</i> , 2018 , 3, 1450-1457	20.1	48
132	Precious Metal-Free Nickel Nitride Catalyst for the Oxygen Reduction Reaction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 26863-26871	9.5	47
131	Guiding Electrochemical Carbon Dioxide Reduction toward Carbonyls Using Copper Silver Thin Films with Interphase Miscibility. <i>ACS Energy Letters</i> , 2018 , 3, 2947-2955	20.1	47
130	Robust and biocompatible catalysts for efficient hydrogen-driven microbial electrosynthesis. <i>Communications Chemistry</i> , 2019 , 2,	6.3	46
129	A Highly Active Molybdenum Phosphide Catalyst for Methanol Synthesis from CO and CO. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15045-15050	16.4	46
128	An X-ray photoelectron spectroscopy study of surface changes on brominated and sulfur-treated activated carbon sorbents during mercury capture: performance of pellet versus fiber sorbents. <i>Environmental Science & Description</i> (2013), 47, 13695-701	10.3	46

127	Rapid flame doping of Co to WS2 for efficient hydrogen evolution. <i>Energy and Environmental Science</i> , 2018 , 11, 2270-2277	35.4	45
126	Climbing the Activity Volcano: CoreBhell Ru@Pt Electrocatalysts for Oxygen Reduction. <i>ChemElectroChem</i> , 2014 , 1, 67-71	4.3	45
125	Selective reduction of CO to acetaldehyde with CuAg electrocatalysts. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 12572-12575	11.5	43
124	Applications of ALD MnO to electrochemical water splitting. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 14003-11	3.6	40
123	Extending the limits of Pt/C catalysts with passivation-gas-incorporated atomic layer deposition. <i>Nature Catalysis</i> , 2018 , 1, 624-630	36.5	40
122	Dynamics of Surface Exchange Reactions Between Au and Pt for HER and HOR. <i>Journal of the Electrochemical Society</i> , 2009 , 156, B273	3.9	39
121	Polymer Electrolyte Membrane Electrolyzers Utilizing Non-precious Mo-based Hydrogen Evolution Catalysts. <i>ChemSusChem</i> , 2015 , 8, 3512-9	8.3	38
120	Band Edge Engineering of Oxide Photoanodes for Photoelectrochemical Water Splitting: Integration of Subsurface Dipoles with Atomic-Scale Control. <i>Advanced Energy Materials</i> , 2016 , 6, 15021	3 4.8	37
119	Crystalline Strontium Iridate Particle Catalysts for Enhanced Oxygen Evolution in Acid. <i>ACS Applied Energy Materials</i> , 2019 , 2, 5490-5498	6.1	36
118	Understanding the Influence of [EMIM]Cl on the Suppression of the Hydrogen Evolution Reaction on Transition Metal Electrodes. <i>Langmuir</i> , 2017 , 33, 9464-9471	4	36
117	Building upon the Koutecky-Levich Equation for Evaluation of Next-Generation Oxygen Reduction Reaction Catalysts. <i>Electrochimica Acta</i> , 2017 , 255, 99-108	6.7	35
116	Carbon Dioxide Electroreduction using a SilverZinc Alloy. <i>Energy Technology</i> , 2017 , 5, 955-961	3.5	34
115	Systematic Investigation of Iridium-Based Bimetallic Thin Film Catalysts for the Oxygen Evolution Reaction in Acidic Media. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 34059-34066	9.5	34
114	Automated electrochemical synthesis and characterization of TiO2supported Au nanoparticle electrocatalysts. <i>Measurement Science and Technology</i> , 2005 , 16, 54-59	2	34
113	A Combined Theory-Experiment Analysis of the Surface Species in Lithium-Mediated NH3 Electrosynthesis. <i>ChemElectroChem</i> , 2020 , 7, 1542-1549	4.3	34
112	Ni5Ga3 catalysts for CO2 reduction to methanol: Exploring the role of Ga surface oxidation/reduction on catalytic activity. <i>Applied Catalysis B: Environmental</i> , 2020 , 267, 118369	21.8	33
111	Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. <i>Nature Energy</i> , 2022 , 7, 130-143	62.3	33
110	Operando investigation of Au-MnOx thin films with improved activity for the oxygen evolution reaction. <i>Electrochimica Acta</i> , 2017 , 230, 22-28	6.7	32

109	Electro-Oxidation of Methane on Platinum under Ambient Conditions. ACS Catalysis, 2019, 9, 7578-758	713.1	32
108	Tuning the electronic structure of Ag-Pd alloys to enhance performance for alkaline oxygen reduction. <i>Nature Communications</i> , 2021 , 12, 620	17.4	32
107	Simultaneous detection of electronic structure changes from two elements of a bifunctional catalyst using wavelength-dispersive X-ray emission spectroscopy and in situ electrochemistry. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 8901-12	3.6	31
106	A Universal Platform for Fabricating Organic Electrochemical Devices. <i>Advanced Electronic Materials</i> , 2018 , 4, 1800090	6.4	31
105	Mesoporous Ruthenium/Ruthenium Oxide Thin Films: Active Electrocatalysts for the Oxygen Evolution Reaction. <i>ChemElectroChem</i> , 2017 , 4, 2480-2485	4.3	30
104	Acidic Oxygen Evolution Reaction ActivityBtability Relationships in Ru-Based Pyrochlores. <i>ACS Catalysis</i> , 2020 , 10, 12182-12196	13.1	30
103	Combined spectroscopy and microscopy of supported MoS2 nanoparticles. <i>Surface Science</i> , 2009 , 603, 1182-1189	1.8	29
102	Understanding the Origin of Highly Selective CO2 Electroreduction to CO on Ni,N-doped Carbon Catalysts. <i>Angewandte Chemie</i> , 2020 , 132, 4072-4079	3.6	29
101	Nitride or Oxynitride? Elucidating the Composition Activity Relationships in Molybdenum Nitride Electrocatalysts for the Oxygen Reduction Reaction. <i>Chemistry of Materials</i> , 2020 , 32, 2946-2960	9.6	28
100	Investigation of Surface Oxidation Processes on Manganese Oxide Electrocatalysts Using Electrochemical Methods and Ex Situ X-ray Photoelectron Spectroscopy. <i>Journal of the Electrochemical Society</i> , 2012 , 159, H782-H786	3.9	27
99	Combinatorial electrochemical synthesis and screening of Pt-WO3 catalysts for electro-oxidation of methanol. <i>Review of Scientific Instruments</i> , 2005 , 76, 062227	1.7	27
98	Transition Metal-Modified Zirconium Phosphate Electrocatalysts for the Oxygen Evolution Reaction. <i>Catalysts</i> , 2017 , 7, 132	4	25
97	Automated synthesis and characterization of diverse libraries of macroporous alumina. <i>Electrochimica Acta</i> , 2001 , 47, 553-557	6.7	25
96	Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability. <i>Nanomaterials</i> , 2018 , 8,	5.4	25
95	Cyclic-Voltammetry-Based Solid-State Gas Sensor for Methane and Other VOC Detection. <i>Analytical Chemistry</i> , 2018 , 90, 6102-6108	7.8	23
94	Parallel synthesis and characterization of photoelectrochemically and electrochromically active tungsten-molybdenum oxides. <i>Chemical Communications</i> , 2004 , 390-1	5.8	23
93	Addressing the Stability Gap in Photoelectrochemistry: Molybdenum Disulfide Protective Catalysts for Tandem IIII Unassisted Solar Water Splitting. <i>ACS Energy Letters</i> , 2020 , 5, 2631-2640	20.1	23
92	Electrochemical flow cell enabling operando probing of electrocatalyst surfaces by X-ray spectroscopy and diffraction. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 5402-5408	3.6	23

91	Copper Silver Thin Films with Metastable Miscibility for Oxygen Reduction Electrocatalysis in Alkaline Electrolytes. <i>ACS Applied Energy Materials</i> , 2018 , 1, 1990-1999	6.1	21
90	Mesoporous platinum nickel thin films with double gyroid morphology for the oxygen reduction reaction. <i>Nano Energy</i> , 2016 , 29, 243-248	17.1	21
89	Direct Characterization of Atomically Dispersed Catalysts: Nitrogen-Coordinated Ni Sites in Carbon-Based Materials for CO2 Electroreduction. <i>Advanced Energy Materials</i> , 2020 , 10, 2001836	21.8	20
88	Tuning Composition and Activity of Cobalt Titanium Oxide Catalysts for the Oxygen Evolution Reaction. <i>Electrochimica Acta</i> , 2016 , 193, 240-245	6.7	18
87	Synthesis of Tungsten Oxide on Copper Surfaces by Electroless Deposition. <i>Chemistry of Materials</i> , 2003 , 15, 3411-3413	9.6	18
86	Advanced manufacturing for electrosynthesis of fuels and chemicals from CO2. <i>Energy and Environmental Science</i> , 2021 , 14, 3064-3074	35.4	17
85	UV-Vis Spectroscopy. <i>SpringerBriefs in Energy</i> , 2013 , 49-62	0.3	16
84	Computational high-throughput screening of electrocatalytic materials for hydrogen evolution 2010 , 280-284		16
83	Molybdenum Disulfide Catalytic Coatings via Atomic Layer Deposition for Solar Hydrogen Production from Copper Gallium Diselenide Photocathodes. <i>ACS Applied Energy Materials</i> , 2019 , 2, 1060	9-9-066	15
82	In Situ X-Ray Absorption Spectroscopy Disentangles the Roles of Copper and Silver in a Bimetallic Catalyst for the Oxygen Reduction Reaction. <i>Chemistry of Materials</i> , 2020 , 32, 1819-1827	9.6	15
81	Interfacial engineering of gallium indium phosphide photoelectrodes for hydrogen evolution with precious metal and non-precious metal based catalysts. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 16821	-1 3 832	2 ¹⁵
80	Nanostructured Manganese Oxide Supported onto Particulate Glassy Carbon as an Active and Stable Oxygen Reduction Catalyst in Alkaline-Based Fuel Cells. <i>Journal of the Electrochemical Society</i> , 2014 , 161, D3105-D3112	3.9	15
79	The Role of Heat Treatment in Enhanced Activity of Manganese Oxides for the Oxygen Reduction and Evolution Reactions. <i>ECS Transactions</i> , 2013 , 58, 735-750	1	15
78	Two-Dimensional Conductive Ni-HAB as a Catalyst for the Electrochemical Oxygen Reduction Reaction. <i>ACS Applied Materials & Damp; Interfaces</i> , 2020 , 12, 39074-39081	9.5	15
77	Using Microenvironments to Control Reactivity in CO2 Electrocatalysis. <i>Joule</i> , 2020 , 4, 292-294	27.8	14
76	Elucidating the electronic structure of supported gold nanoparticles and its relevance to catalysis by means of hard X-ray photoelectron spectroscopy. <i>Surface Science</i> , 2016 , 650, 24-33	1.8	14
75	Improving the Photoelectrochemical Performance of Hematite by Employing a High Surface Area Scaffold and Engineering SolidBolid Interfaces. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500626	4.6	14
74	Nanostructuring Strategies To Increase the Photoelectrochemical Water Splitting Activity of Silicon Photocathodes. <i>ACS Applied Nano Materials</i> , 2019 , 2, 6-11	5.6	14

73	Mapping Photoelectrochemical Current Distribution at Nanoscale Dimensions on Morphologically Controlled BiVO4. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 3702-7	6.4	13
72	Low-pressure methanol synthesis from CO2 over metal-promoted Ni-Ga intermetallic catalysts. <i>Journal of CO2 Utilization</i> , 2020 , 39, 101151	7.6	13
71	Aqueous Electrochemical Reduction of Carbon Dioxide and Carbon Monoxide into Methanol with Cobalt Phthalocyanine. <i>Angewandte Chemie</i> , 2019 , 131, 16318-16322	3.6	13
70	The Materials Research Platform: Defining the Requirements from User Stories. <i>Matter</i> , 2019 , 1, 1433-1	438 ₇	13
69	Transition Metal-Modified Exfoliated Zirconium Phosphate as an Electrocatalyst for the Oxygen Evolution Reaction. <i>ACS Applied Energy Materials</i> , 2019 , 2, 3561-3567	6.1	12
68	A Highly Active Molybdenum Phosphide Catalyst for Methanol Synthesis from CO and CO2. <i>Angewandte Chemie</i> , 2018 , 130, 15265-15270	3.6	12
67	High Surface Area Transparent Conducting Oxide Electrodes with a Customizable Device Architecture. <i>Chemistry of Materials</i> , 2014 , 26, 958-964	9.6	12
66	Synthesis of Au nanoclusters supported upon a TiO2 nanotube array. <i>Journal of Materials Research</i> , 2005 , 20, 1093-1096	2.5	12
65	Morphology control of metal-modified zirconium phosphate support structures for the oxygen evolution reaction. <i>Dalton Transactions</i> , 2020 , 49, 3892-3900	4.3	12
64	Bimetallic effects on Zn-Cu electrocatalysts enhance activity and selectivity for the conversion of CO2 to CO. <i>Chem Catalysis</i> , 2021 , 1, 663-680		11
63	CoTiOxCatalysts for the Oxygen Evolution Reaction. <i>Journal of the Electrochemical Society</i> , 2015 , 162, H841-H846	3.9	10
62	Nanosized Zirconium Porphyrinic Metal©rganic Frameworks that Catalyze the Oxygen Reduction Reaction in Acid. <i>Small Methods</i> , 2020 , 4, 2000085	12.8	10
61	Effects of Ta3N5 Morphology and Composition on the Performance of Si-Ta3NIB Photoanodes. <i>Solar Rrl</i> , 2017 , 1, 1700121	7.1	8
60	Identifying and Tuning the In Situ Oxygen-Rich Surface of Molybdenum Nitride Electrocatalysts for Oxygen Reduction. <i>ACS Applied Energy Materials</i> , 2020 , 3, 12433-12446	6.1	8
59	Impact of Nanostructuring on the Photoelectrochemical Performance of Si/Ta3N5 Nanowire Photoanodes. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 27295-27302	3.8	8
58	Isolating the Electrocatalytic Activity of a Confined NiFe Motif within Zirconium Phosphate. <i>Advanced Energy Materials</i> , 2021 , 11, 2003545	21.8	8
57	Development of Molybdenum Phosphide Catalysts for Higher Alcohol Synthesis from Syngas by Exploiting Support and Promoter Effects. <i>Energy Technology</i> , 2019 , 7, 1801102	3.5	7
56	Surface Engineering of 3D Gas Diffusion Electrodes for High-Performance H2 Production with Nonprecious Metal Catalysts. <i>Advanced Energy Materials</i> , 2019 , 9, 1901824	21.8	7

55	Nanostructuring MoS 2 for photoelectrochemical water splitting 2010 ,		7
54	Flat-Band Potential Techniques. SpringerBriefs in Energy, 2013, 63-85	0.3	7
53	Top-down fabrication of fluorine-doped tin oxide nanopillar substrates for solar water splitting. <i>RSC Advances</i> , 2017 , 7, 28350-28357	3.7	6
52	Electrooxidation of Alcohols with Electrode-Supported Transfer Hydrogenation Catalysts. <i>ACS Catalysis</i> , 2015 , 5, 7343-7349	13.1	6
51	A Spin Coating Method To Deposit Iridium-Based Catalysts onto Silicon for Water Oxidation Photoanodes. <i>ACS Applied Materials & Acs Applied </i>	9.5	6
50	Ex Situ Spectroscopy Study of Manganese Oxide Catalytic Surfaces under Reaction Conditions Relevant to Oxygen Reduction and Oxygen Evolution. <i>ECS Transactions</i> , 2011 , 41, 1701-1707	1	6
49	Designing a Zn-Ag Catalyst Matrix and Electrolyzer System for CO Conversion to CO and Beyond. <i>Advanced Materials</i> , 2021 , e2103963	24	6
48	Polyol Synthesis of Cobalt©opper Alloy Catalysts for Higher Alcohol Synthesis from Syngas. <i>Catalysis Letters</i> , 2017 , 147, 2352-2359	2.8	6
47	Using pH Dependence to Understand Mechanisms in Electrochemical CO Reduction. ACS Catalysis,4344	I- 43 57	6
46	A cyclic electrochemical strategy to produce acetylene from CO2, CH4, or alternative carbon sources. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 2752-2759	5.8	5
45	Platinum and hybrid polyaniline platinum surfaces for the electrocatalytic reduction of CO2. MRS Communications, 2015, 5, 319-325	2.7	5
44	Incident Photon-to-Current Efficiency and Photocurrent Spectroscopy. <i>SpringerBriefs in Energy</i> , 2013 , 87-97	0.3	5
43	Low-Voltage Electrodeposition of Fullerol Thin Films from Aqueous Solutions. <i>Journal of the Electrochemical Society</i> , 2006 , 153, C483	3.9	5
42	Evaluating the Case for Reduced Precious Metal Catalysts in Proton Exchange Membrane Electrolyzers. <i>ACS Energy Letters</i> ,17-23	20.1	5
41	Bridging Thermal Catalysis and Electrocatalysis: Catalyzing CO Conversion with Carbon-Based Materials. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 17472-17480	16.4	5
40	Microfabricated electrochemical gas sensor. <i>Micro and Nano Letters</i> , 2016 , 11, 798-802	0.9	5
39	Chemical Modifications of Ag Catalyst Surfaces with Imidazolium Ionomers Modulate H Evolution Rates during Electrochemical CO Reduction. <i>Journal of the American Chemical Society</i> , 2021 , 143, 14712	2-14 1 2:	5 5
38	Understanding Selectivity in CO2 Hydrogenation to Methanol for MoP Nanoparticle Catalysts Using In Situ Techniques. <i>Catalysts</i> , 2021 , 11, 143	4	5

37	Transition Metal Arsenide Catalysts for the Hydrogen Evolution Reaction. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 24007-24012	3.8	4
36	Modified atomic layer deposition of MoS2 thin films. <i>Journal of Vacuum Science and Technology A:</i> Vacuum, Surfaces and Films, 2020 , 38, 060403	2.9	4
35	Direct Integration of Strained-Pt Catalysts into Proton-Exchange-Membrane Fuel Cells with Atomic Layer Deposition. <i>Advanced Materials</i> , 2021 , 33, e2007885	24	4
34	Understanding Degradation Mechanisms in SrIrO3 Oxygen Evolution Electrocatalysts: Chemical and Structural Microscopy at the Nanoscale. <i>Advanced Functional Materials</i> , 2021 , 31, 2101542	15.6	4
33	Probing the Effects of Acid Electrolyte Anions on Electrocatalyst Activity and Selectivity for the Oxygen Reduction Reaction. <i>ChemElectroChem</i> , 2021 , 8, 2467-2478	4.3	4
32	CO as a Probe Molecule to Study Surface Adsorbates during Electrochemical Oxidation of Propene. <i>ChemElectroChem</i> , 2021 , 8, 250-256	4.3	4
31	Bottom-Up Fabrication of Oxygen Reduction Electrodes with Atomic Layer Deposition for High-Power-Density PEMFCs. <i>Cell Reports Physical Science</i> , 2021 , 2, 100297	6.1	4
30	Enhancing the connection between computation and experiments in electrocatalysis. <i>Nature Catalysis</i> , 2022 , 5, 374-381	36.5	4
29	Water Splitting Electrocatalysis within Layered Inorganic Nanomaterials 2020,		3
28	Effects of a New Electrochemical Cleaning Protocol on Ru@Pt Core-Shell ORR Catalysts. <i>ECS Transactions</i> , 2013 , 58, 929-936	1	3
27	Readily Constructed Glass Piston Pump for Gas Recirculation. ACS Omega, 2020, 5, 16455-16459	3.9	3
26	Tungsten oxide-coated copper gallium selenide sustains long-term solar hydrogen evolution. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 384-390	5.8	3
25	Cobalt porphyrin intercalation into zirconium phosphate layers for electrochemical water oxidation. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 430-437	5.8	3
24	Electrolyte-Guided Design of Electroreductive CO Coupling on Copper Surfaces. <i>ACS Applied Energy Materials</i> , 2021 , 4, 8201-8210	6.1	3
23	High Resolution Transmission Electron Microscopy Study on the Degradation of IrOx/SrIrO3 as an Oxygen Evolution Catalyst. <i>Microscopy and Microanalysis</i> , 2020 , 26, 3168-3169	0.5	2
22	Characterization of a Dynamic Y2Ir2O7 Catalyst during the Oxygen Evolution Reaction in Acid. <i>Journal of Physical Chemistry C</i> , 2022 , 126, 1751-1760	3.8	2
21	Dynamics and Hysteresis of Hydrogen Intercalation and Deintercalation in Palladium Electrodes: A Multimodal In Situ X-ray Diffraction, Coulometry, and Computational Study. <i>Chemistry of Materials</i> , 2021 , 33, 5872-5884	9.6	2
20	Guiding the Catalytic Properties of Copper for Electrochemical CO Reduction by Metal Atom Decoration. ACS Applied Materials & amp; Interfaces, 2021,	9.5	2

19	PEC Characterization Flowchart. SpringerBriefs in Energy, 2013, 45-47	0.3	2
18	Lithium-Mediated Electrochemical Nitrogen Reduction: Tracking Electrode E lectrolyte Interfaces via Time-Resolved Neutron Reflectometry. <i>ACS Energy Letters</i> ,1939-1946	20.1	2
17	Transmission Electron Microscopy (TEM) Studies on Nickel and Molybdenum Nitrides as Oxygen Reduction Reaction Catalysts. <i>Microscopy and Microanalysis</i> , 2019 , 25, 2072-2073	0.5	1
16	Photon Management for Near-Total Solar Absorption in Hematite Photoanodes. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1670, 8		1
15	Effect of Temperature Treatment on CoTiOx Catalyst for the Oxygen Evolution Reaction. <i>ECS Transactions</i> , 2013 , 58, 285-291	1	1
14	Experimental Considerations. <i>SpringerBriefs in Energy</i> , 2013 , 17-44	0.3	1
13	A refraction correction for buried interfaces applied to in situ grazing-incidence X-ray diffraction studies on Pd electrodes. <i>Journal of Synchrotron Radiation</i> , 2021 , 28, 919-923	2.4	1
12	Bridging Thermal Catalysis and Electrocatalysis: Catalyzing CO2 Conversion with Carbon-Based Materials. <i>Angewandte Chemie</i> , 2021 , 133, 17613-17621	3.6	1
11	Phosphate-passivated mordenite for tandem-catalytic conversion of syngas to ethanol or acetic acid. <i>Journal of Catalysis</i> , 2021 , 399, 132-141	7.3	1
10	In Situ Studies of the Formation of MoP Catalysts and Their Structure under Reaction Conditions for Higher Alcohol Synthesis: The Role of Promoters and Mesoporous Supports. <i>Journal of Physical Chemistry C</i> , 2022 , 126, 5575-5583	3.8	1
9	A Combined Theory-Experiment Analysis of the Surface Species in Lithium-Mediated NH3 Electrosynthesis. <i>ChemElectroChem</i> , 2020 , 7, 1513-1513	4.3	0
8	Demonstration of photoreactor platform for on-sun unassisted photoelectrochemical hydrogen generation with tandem IIIIV photoelectrodes. <i>Chem Catalysis</i> , 2022 , 2, 195-209		Ο
7	Improving intrinsic oxygen reduction activity and stability: Atomic layer deposition preparation of platinum-titanium alloy catalysts. <i>Applied Catalysis B: Environmental</i> , 2022 , 300, 120741	21.8	0
6	Vapor-Fed Electrolyzers for Carbon Dioxide Reduction Using Tandem Electrocatalysts: Cuprous Oxide Coupled with Nickel-Coordinated Nitrogen-Doped Carbon. <i>Advanced Functional Materials</i> ,21132	5 ² 5.6	O
5	Development of Reliable Methods and Protocols for Electrocatalytic N2 Reduction. <i>ECS Meeting Abstracts</i> , 2020 , MA2020-02, 2860-2860	O	
4	Use of in Situ Synchrotron Techniques to Probe the Oxidized Surface of Molybdenum Nitride Oxygen Reduction Electrocatalysis. <i>ECS Meeting Abstracts</i> , 2020 , MA2020-02, 3157-3157	Ο	
3	2-Electrode Short Circuit and j\(\mathbb{N} \). SpringerBriefs in Energy, 2013 , 99-103	0.3	
2	Stability Testing. SpringerBriefs in Energy, 2013 , 115-118	0.3	

Prospects for In Situ TEM on Electrocatalyst Materials for Sustainable Energy Technologies.

Microscopy and Microanalysis, 2021, 27, 44-45

0.5