
## J Älvarez-RodrÃ-guez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2346591/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | First Phenol Carboxylation with CO2 on Carbon Nanostructured C@Fe-Al2O3 Hybrids in Aqueous<br>Media under Mild Conditions. Nanomaterials, 2021, 11, 190.                                                                            | 4.1  | 7         |
| 2  | Selection of iron precursor for preparation of 3D-solids of hydrophobic composites with Î <sup>3</sup> -alumina and carbon nanostructured materials. Journal of Cleaner Production, 2019, 214, 290-297.                             | 9.3  | 4         |
| 3  | Effect of the metal precursor on the catalytic performance of the Ru/KL system for the ethanol transformation reactions. Applied Catalysis A: General, 2017, 535, 61-68.                                                            | 4.3  | 4         |
| 4  | Application in powder metallurgy of CVD carbon nanofibres: microstructure and mechanical properties CNF reinforced Distaloy AQ. Powder Metallurgy, 2017, 60, 345-352.                                                               | 1.7  | 1         |
| 5  | 3D solid supported inter-polyelectrolyte complexes obtained by the alternate deposition of<br>poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). Beilstein Journal of<br>Nanotechnology, 2016, 7, 197-208. | 2.8  | 19        |
| 6  | Selective catalytic reduction of NO with NH3 over Cr-ZSM-5 catalysts: General characterization and catalysts screening. Applied Catalysis B: Environmental, 2013, 134-135, 367-380.                                                 | 20.2 | 39        |
| 7  | Cr–ZSM-5 catalysts for ethylene ammoxidation: Effects of precursor nature and Cr/Al molar ratio on the physicochemical and catalytic properties. Microporous and Mesoporous Materials, 2013, 171, 166-178.                          | 4.4  | 15        |
| 8  | Influence of the parent zeolite structure on chromium speciation and catalytic properties of<br>Cr-zeolite catalysts in the ethylene ammoxidation. Applied Catalysis A: General, 2012, 439-440, 88-100.                             | 4.3  | 20        |
| 9  | Influence of the nature of support on Ru-supported catalysts for selective hydrogenation of citral.<br>Chemical Engineering Journal, 2012, 204-206, 169-178.                                                                        | 12.7 | 32        |
| 10 | Total oxidation of VOCs on Au nanoparticles anchored on Co doped mesoporous UVM-7 silica.<br>Chemical Engineering Journal, 2012, 187, 391-400.                                                                                      | 12.7 | 44        |
| 11 | Ammoxidation of ethylene over low and over-exchanged Cr–ZSM-5 catalysts. Applied Catalysis A:<br>General, 2012, 415-416, 132-140.                                                                                                   | 4.3  | 23        |
| 12 | Selective hydrogenation of citral over Pt/KL type catalysts doped with Sr, La, Nd and Sm. Applied<br>Catalysis A: General, 2011, 401, 56-64.                                                                                        | 4.3  | 24        |
| 13 | Carbon nanostrutured materials as direct catalysts for phenol oxidation in aqueous phase. Applied<br>Catalysis B: Environmental, 2011, 104, 101-109.                                                                                | 20.2 | 40        |
| 14 | Effect of the chromium precursor nature on the physicochemical and catalytic properties of<br>Cr–ZSM-5 catalysts: Application to the ammoxidation of ethylene. Journal of Molecular Catalysis A,<br>2011, 339, 8-16.                | 4.8  | 34        |
| 15 | Design of appropriate surface sites for ruthenium-ceria catalysts supported on graphite by controlled preparation method. Studies in Surface Science and Catalysis, 2010, , 751-754.                                                | 1.5  | 0         |
| 16 | The use of carbon nanotubes with and without nitrogen doping as support for ruthenium catalysts in the ammonia decomposition reaction. Carbon, 2010, 48, 267-276.                                                                   | 10.3 | 144       |
| 17 | Stable anchoring of dispersed gold nanoparticles on hierarchic porous silica-based materials. Journal of Materials Chemistry, 2010, 20, 6780.                                                                                       | 6.7  | 19        |
| 18 | Thiophene as Internal Promoter of Selectivity for the Liquid Phase Hydrogenation of Citral Over Ru/KL<br>Catalysts. Catalysis Letters. 2009. 129. 376-382.                                                                          | 2.6  | 8         |

J Älvarez-RodrÄguez

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Surface changes in Ru/KL supported catalysts induced by the preparation method and their effect on the selective hydrogenation of citral. Applied Catalysis A: General, 2009, 366, 114-121.        | 4.3  | 21        |
| 20 | Efficient catalytic wet oxidation of phenol using iron acetylacetonate complexes anchored on carbon nanofibres. Carbon, 2009, 47, 2095-2102.                                                       | 10.3 | 23        |
| 21 | Changes in the selective hydrogenation of citral induced by copper addition to Ru/KL catalysts.<br>Microporous and Mesoporous Materials, 2008, 110, 186-196.                                       | 4.4  | 16        |
| 22 | Structural changes on RuCu/KL bimetallic catalysts as evidenced by n-hexane reforming. Catalysis<br>Today, 2008, 133-135, 793-799.                                                                 | 4.4  | 4         |
| 23 | Effect of nickel precursor and the copper addition on the surface properties of Ni/KL-supported catalysts for selective hydrogenation of citral. Applied Catalysis A: General, 2008, 348, 241-250. | 4.3  | 26        |
| 24 | Mesosynthesis of ZnO–SiO <sub>2</sub> porous nanocomposites with low-defect ZnO nanometric domains. Nanotechnology, 2008, 19, 225603.                                                              | 2.6  | 25        |
| 25 | Support effects on Ru–HPA bifunctional catalysts: Surface characterization and catalytic performance. Applied Catalysis A: General, 2007, 333, 281-289.                                            | 4.3  | 14        |
| 26 | Surface and structural effects in the hydrogenation of citral over RuCu/KL catalysts. Microporous and Mesoporous Materials, 2006, 97, 122-131.                                                     | 4.4  | 24        |
| 27 | Modifications of the citral hydrogenation selectivities over Ru/KL-zeolite catalysts induced by the metal precursors. Catalysis Today, 2005, 107-108, 302-309.                                     | 4.4  | 42        |