Caixia Wan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/234626/publications.pdf Version: 2024-02-01

CALVIA WAN

#	Article	IF	CITATIONS
1	Molecular Entrapment of Polymers by Pyrogallol[4]arenes. Journal of the American Chemical Society, 2021, 143, 693-698.	6.6	7
2	Biomass-derived porous graphene for electrochemical sensing of dopamine. RSC Advances, 2021, 11, 15410-15415.	1.7	33
3	Microbial Conversion of Lignin-Based Compounds into Carotenoids by Rhodococci. Applied Biochemistry and Biotechnology, 2021, 193, 3442-3453.	1.4	5
4	Efficient biosynthesis of lipids from concentrated biomass hydrolysates by an oleaginous yeast. Bioresource Technology Reports, 2021, 15, 100712.	1.5	2
5	Revealing the role of hydrogen bonding interactions and supramolecular complexes in lignin dissolution by deep eutectic solvents. Journal of Molecular Liquids, 2021, 344, 117779.	2.3	15
6	Insights into Structural Changes of Lignin toward Tailored Properties during Deep Eutectic Solvent Pretreatment. ACS Sustainable Chemistry and Engineering, 2020, 8, 9783-9793.	3.2	72
7	Laser-Induced Graphene Derived from Kraft Lignin for Flexible Supercapacitors. ACS Omega, 2020, 5, 14611-14618.	1.6	56
8	Techno-economic analysis of an integrated biorefinery strategy based on one-pot biomass fractionation and furfural production. Journal of Cleaner Production, 2020, 260, 120837.	4.6	72
9	Lignin extraction and upgrading using deep eutectic solvents. Industrial Crops and Products, 2020, 147, 112241.	2.5	159
10	Technoâ€economic analysis of coâ€production of 2,3â€butanediol, furfural, and technical lignin via biomass processing based on deep eutectic solvent pretreatment. Biofuels, Bioproducts and Biorefining, 2020, 14, 326-343.	1.9	35
11	Transforming lignin into porous graphene <i>via</i> direct laser writing for solid-state supercapacitors. RSC Advances, 2019, 9, 22713-22720.	1.7	52
12	One-pot selective conversion of lignocellulosic biomass into furfural and co-products using aqueous choline chloride/methyl isobutyl ketone biphasic solvent system. Bioresource Technology, 2019, 289, 121708.	4.8	45
13	A novel deep eutectic solvent/acetone biphasic system for high-yield furfural production. Bioresource Technology Reports, 2019, 8, 100318.	1.5	16
14	Effects of alkaline hydrogen peroxide treatment on cellulose accessibility of switchgrass pretreated by acidic deep eutectic solvent. Cellulose, 2019, 26, 9439-9446.	2.4	17
15	Ternary deep eutectic solvents for effective biomass deconstruction at high solids and low enzyme loadings. Bioresource Technology, 2019, 279, 281-286.	4.8	94
16	Effect of Dibasic Calcium Phosphate Incorporation on Cellulose Nanocrystal/Chitosan Hydrogel Properties for the Treatment of Vertebral Compression Fractures. AAPS Journal, 2019, 21, 41.	2.2	11
17	Inductive co-crosslinking of cellulose nanocrystal/chitosan hydrogels for the treatment of vertebral compression fractures. International Journal of Biological Macromolecules, 2019, 130, 88-98.	3.6	32
18	Deep eutectic solvent pretreatment enabling full utilization of switchgrass. Bioresource Technology, 2018, 263, 40-48.	4.8	141

CAIXIA WAN

#	Article	IF	CITATIONS
19	Aqueous Choline Chloride: A Novel Solvent for Switchgrass Fractionation and Subsequent Hemicellulose Conversion into Furfural. ACS Sustainable Chemistry and Engineering, 2018, 6, 6910-6919.	3.2	56
20	Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment. Bioresource Technology, 2018, 250, 532-537.	4.8	227
21	High-Solid Lignocellulose Processing Enabled by Natural Deep Eutectic Solvent for Lignin Extraction and Industrially Relevant Production of Renewable Chemicals. ACS Sustainable Chemistry and Engineering, 2018, 6, 12205-12216.	3.2	137
22	Biorefinery Lignin to Renewable Chemicals via Sequential Fractionation and Depolymerization. Waste and Biomass Valorization, 2017, 8, 393-400.	1.8	10
23	Biological valorization strategies for converting lignin into fuels and chemicals. Renewable and Sustainable Energy Reviews, 2017, 73, 610-621.	8.2	206
24	Co-fermentation of lignocellulose-based glucose and inhibitory compounds for lipid synthesis by Rhodococcus jostii RHA1. Process Biochemistry, 2017, 57, 159-166.	1.8	15
25	Non-sterile fermentations for the economical biochemical conversion of renewable feedstocks. Biotechnology Letters, 2017, 39, 1765-1777.	1.1	29
26	Effects of Salts Contained in Lignocellulose-Derived Sugar Streams on Microbial Lipid Production. Applied Biochemistry and Biotechnology, 2017, 183, 1362-1374.	1.4	7
27	Sigma Factor Regulated Cellular Response in a Non-solvent Producing Clostridium beijerinckii Degenerated Strain: A Comparative Transcriptome Analysis. Frontiers in Microbiology, 2017, 8, 23.	1.5	5
28	Transcriptional analysis of degenerate strain Clostridium beijerinckii DG-8052 reveals a pleiotropic response to CaCO3-associated recovery of solvent production. Scientific Reports, 2016, 6, 38818.	1.6	12
29	Reducing biomass recalcitrance via mild sodium carbonate pretreatment. Bioresource Technology, 2016, 209, 386-390.	4.8	60
30	Carboxylic acid production from brewer's spent grain via mixed culture fermentation. Bioresource Technology, 2015, 182, 179-183.	4.8	56
31	Synthesis of Aromatic-Rich Gasoline-Range Hydrocarbons from Biomass-Derived Syngas over a Pd-Promoted Fe/HZSM-5 Catalyst. Energy & Fuels, 2014, 28, 2027-2034.	2.5	52
32	Fungal pretreatment of lignocellulosic biomass. Biotechnology Advances, 2012, 30, 1447-1457.	6.0	426
33	Co-production of Lactic Acid and Lactobacillus rhamnosus Cells from Whey Permeate with Nutrient Supplements. Food and Bioprocess Technology, 2012, 5, 1278-1286.	2.6	20
34	Effect of hot water extraction and liquid hot water pretreatment on the fungal degradation of biomass feedstocks. Bioresource Technology, 2011, 102, 9788-9793.	4.8	67
35	Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Bioresource Technology, 2011, 102, 6254-6259.	4.8	171
36	Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feedstocks. Bioresource Technology, 2011, 102, 7507-7512.	4.8	155

CAIXIA WAN

#	Article	IF	CITATIONS
37	Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease. Waste Management, 2011, 31, 1752-1758.	3.7	178
38	Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresource Technology, 2010, 101, 6398-6403.	4.8	200
39	Succinic Acid Production from Cheese Whey using Actinobacillus succinogenes 130 Z. Applied Biochemistry and Biotechnology, 2008, 145, 111-119.	1.4	83