
Yi-Ming Chiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2346187/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of a silent azaphilone biosynthesis gene cluster in Aspergillus terreus NIH 2624. Fungal Genetics and Biology, 2022, 160, 103694.	0.9	2
2	Identification of the pigment and its role in UV resistance in Paecilomyces variotii, a Chernobyl isolate, using genetic manipulation strategies. Fungal Genetics and Biology, 2021, 152, 103567.	0.9	13
3	An <i>Aspergillus nidulans</i> Platform for the Complete Cluster Refactoring and Total Biosynthesis of Fungal Natural Products. ACS Synthetic Biology, 2021, 10, 173-182.	1.9	14
4	Metabolomic Analysis of Aspergillus niger Isolated From the International Space Station Reveals Enhanced Production Levels of the Antioxidant Pyranonigrin A. Frontiers in Microbiology, 2020, 11, 931.	1.5	16
5	International Space Station conditions alter genomics, proteomics, and metabolomics in Aspergillus nidulans. Applied Microbiology and Biotechnology, 2019, 103, 1363-1377.	1.7	32
6	Discovery and Elucidation of the Biosynthesis of Aspernidgulenes: Novel Polyenes from <i>Aspergillus Nidulans</i> by Using Serial Promoter Replacement. ChemBioChem, 2019, 20, 329-334.	1.3	12
7	Hybrid Transcription Factor Engineering Activates the Silent Secondary Metabolite Gene Cluster for (+)-Asperlin in <i>Aspergillus nidulans</i> . ACS Chemical Biology, 2018, 13, 3193-3205.	1.6	35
8	Baicalein Targets GTPaseâ€Mediated Autophagy to Eliminate Liver Tumor–Initiating Stem Cell–Like Cells Resistant to mTORC1 Inhibition. Hepatology, 2018, 68, 1726-1740.	3.6	55
9	Overexpression of a three-gene conidial pigment biosynthetic pathway in Aspergillus nidulans reveals the first NRPS known to acetylate tryptophan. Fungal Genetics and Biology, 2017, 101, 1-6.	0.9	21
10	Discovery of McrA, a master regulator of <i>Aspergillus</i> secondary metabolism. Molecular Microbiology, 2017, 103, 347-365.	1.2	73
11	Development of Genetic Dereplication Strains in <i>Aspergillus nidulans</i> Results in the Discovery of Aspercryptin. Angewandte Chemie, 2016, 128, 1694-1697.	1.6	8
12	Development of Genetic Dereplication Strains in <i>Aspergillus nidulans</i> Results in the Discovery of Aspercryptin. Angewandte Chemie - International Edition, 2016, 55, 1662-1665.	7.2	139
13	Resistance Gene-Guided Genome Mining: Serial Promoter Exchanges in <i>Aspergillus nidulans</i> Reveal the Biosynthetic Pathway for Fellutamide B, a Proteasome Inhibitor. ACS Chemical Biology, 2016, 11, 2275-2284.	1.6	105
14	Biosynthetic Pathway of the Reduced Polyketide Product Citreoviridin in <i>Aspergillus terreus</i> var. <i>aureus</i> Revealed by Heterologous Expression in <i>Aspergillus nidulans</i> . Organic Letters, 2016, 18, 1366-1369.	2.4	57
15	Genome mining and molecular characterization of the biosynthetic gene cluster of a diterpenic meroterpenoid, 15-deoxyoxalicine B, in Penicillium canescens. Chemical Science, 2015, 6, 6537-6544.	3.7	33
16	Inhibition of Tau Aggregation by Three Aspergillus nidulans Secondary Metabolites: 2,ï‰-Dihydroxyemodin, Asperthecin, and Asperbenzaldehyde. Planta Medica, 2014, 80, 77-85.	0.7	38
17	Rational Domain Swaps Reveal Insights about Chain Length Control by Ketosynthase Domains in Fungal Nonreducing Polyketide Synthases. Organic Letters, 2014, 16, 1676-1679.	2.4	31
18	Application of an Efficient Gene Targeting System Linking Secondary Metabolites to their Biosynthetic Genes in <i>Aspergillus terreus</i> . Organic Letters, 2013, 15, 3562-3565.	2.4	48

YI-MING CHIANG

#	Article	IF	CITATIONS
19	Reconstitution of the early steps of gliotoxin biosynthesis in Aspergillus nidulans reveals the role of the monooxygenase GliC. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2155-2157.	1.0	18
20	<scp>VeA</scp> and <scp>MvlA</scp> repression of the cryptic orsellinic acid gene cluster in <i><scp>A</scp>spergillus nidulans</i> involves histone 3 acetylation. Molecular Microbiology, 2013, 89, 963-974.	1.2	37
21	Biosynthetic Pathway for the Epipolythiodioxopiperazine Acetylaranotin in Aspergillus terreus Revealed by Genome-Based Deletion Analysis. Journal of the American Chemical Society, 2013, 135, 7205-7213.	6.6	82
22	An Efficient System for Heterologous Expression of Secondary Metabolite Genes in Aspergillus nidulans. Journal of the American Chemical Society, 2013, 135, 7720-7731.	6.6	180
23	Engineering Fungal Nonreducing Polyketide Synthase by Heterologous Expression and Domain Swapping. Organic Letters, 2013, 15, 756-759.	2.4	29
24	bZIP transcription factors affecting secondary metabolism, sexual development and stress responses in Aspergillus nidulans. Microbiology (United Kingdom), 2013, 159, 77-88.	0.7	89
25	Molecular Genetic Characterization of the Biosynthesis Cluster of a Prenylated Isoindolinone Alkaloid Aspernidine A in <i>Aspergillus nidulans</i> . Organic Letters, 2013, 15, 2862-2865.	2.4	39
26	Overexpression of the <i><scp>A</scp>spergillus nidulans</i> histone 4 acetyltransferase <scp>EsaA</scp> increases activation of secondary metabolite production. Molecular Microbiology, 2012, 86, 314-330.	1.2	116
27	Molecular Genetic Characterization of a Cluster in <i>A. terreus</i> for Biosynthesis of the Meroterpenoid Terretonin. Organic Letters, 2012, 14, 5684-5687.	2.4	80
28	Reengineering an Azaphilone Biosynthesis Pathway in <i>Aspergillus nidulans</i> To Create Lipoxygenase Inhibitors. Organic Letters, 2012, 14, 972-975.	2.4	38
29	Two Separate Gene Clusters Encode the Biosynthetic Pathway for the Meroterpenoids Austinol and Dehydroaustinol in <i>Aspergillus nidulans</i> . Journal of the American Chemical Society, 2012, 134, 4709-4720.	6.6	223
30	Molecular genetic analysis reveals that a nonribosomal peptide synthetase-like (NRPS-like) gene in Aspergillus nidulans is responsible for microperfuranone biosynthesis. Applied Microbiology and Biotechnology, 2012, 96, 739-748.	1.7	49
31	Illuminating the Diversity of Aromatic Polyketide Synthases in <i>Aspergillus nidulans</i> . Journal of the American Chemical Society, 2012, 134, 8212-8221.	6.6	168
32	An <i>Aspergillus nidulans</i> bZIP response pathway hardwired for defensive secondary metabolism operates through <i>aflR</i> . Molecular Microbiology, 2012, 83, 1024-1034.	1.2	93
33	Engineering of an "Unnatural―Natural Product by Swapping Polyketide Synthase Domains in <i>Aspergillus nidulans</i> . Journal of the American Chemical Society, 2011, 133, 13314-13316.	6.6	56
34	Genome-Based Deletion Analysis Reveals the Prenyl Xanthone Biosynthesis Pathway in <i>Aspergillus nidulans</i> . Journal of the American Chemical Society, 2011, 133, 4010-4017.	6.6	154
35	Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-Î ³ -pyrone. Fungal Genetics and Biology, 2011, 48, 430-437.	0.9	91
36	Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Current Opinion in Chemical Biology, 2011, 15, 137-143.	2.8	181

YI-MING CHIANG

#	Article	IF	CITATIONS
37	Unraveling polyketide synthesis in members of the genus Aspergillus. Applied Microbiology and Biotechnology, 2010, 86, 1719-1736.	1.7	73
38	Asperfuranone from <i>Aspergillus nidulans</i> Inhibits Proliferation of Human Non‧mall Cell Lung Cancer A549 Cells via Blocking Cell Cycle Progression and Inducing Apoptosis. Basic and Clinical Pharmacology and Toxicology, 2010, 107, 583-589.	1.2	22
39	Characterization of the <i>Aspergillus nidulans</i> Monodictyphenone Gene Cluster. Applied and Environmental Microbiology, 2010, 76, 2067-2074.	1.4	159
40	Molecular genetic analysis of the orsellinic acid/F9775 genecluster of Aspergillus nidulans. Molecular BioSystems, 2010, 6, 587-593.	2.9	118
41	Unlocking Fungal Cryptic Natural Products. Natural Product Communications, 2009, 4, 1934578X0900401.	0.2	38
42	Chromatin-level regulation of biosynthetic gene clusters. Nature Chemical Biology, 2009, 5, 462-464.	3.9	358
43	A Gene Cluster Containing Two Fungal Polyketide Synthases Encodes the Biosynthetic Pathway for a Polyketide, Asperfuranone, in <i>Aspergillus nidulans</i> . Journal of the American Chemical Society, 2009, 131, 2965-2970.	6.6	292
44	Unlocking fungal cryptic natural products. Natural Product Communications, 2009, 4, 1505-10.	0.2	71
45	Molecular Genetic Mining of the Aspergillus Secondary Metabolome: Discovery of the Emericellamide Biosynthetic Pathway. Chemistry and Biology, 2008, 15, 527-532.	6.2	193
46	Norsolorinic Acid from <i>Aspergillus nidulans</i> Inhibits the Proliferation of Human Breast Adenocarcinoma MCFâ€7 Cells via Fasâ€Mediated Pathway. Basic and Clinical Pharmacology and Toxicology, 2008, 102, 491-497.	1.2	18
47	Diversity of Polyketide Synthases Found in the Aspergillus and Streptomyces Genomes. Molecular Pharmaceutics, 2008, 5, 226-233.	2.3	17
48	Identification and Characterization of the Asperthecin Gene Cluster of <i>Aspergillus nidulans</i> . Applied and Environmental Microbiology, 2008, 74, 7607-7612.	1.4	149
49	A Novel Polyacetylene Significantly Inhibits Angiogenesis and Promotes Apoptosis in Human Endothelial Cells through Activation of the CDK Inhibitors and Caspase-7. Planta Medica, 2007, 73, 655-661.	0.7	22
50	Cytopiloyne, a Polyacetylenic Glucoside, Prevents Type 1 Diabetes in Nonobese Diabetic Mice. Journal of Immunology, 2007, 178, 6984-6993.	0.4	45
51	Cytopiloyne, a novel polyacetylenic glucoside from Bidens pilosa, functions as a T helper cell modulator. Journal of Ethnopharmacology, 2007, 110, 532-538.	2.0	62
52	Flavonoids, centaurein and centaureidin, from Bidens pilosa, stimulate IFN-Î ³ expression. Journal of Ethnopharmacology, 2007, 112, 232-236.	2.0	77
53	The effect of centaurein on interferon-γ expression and Listeria infection in mice. Toxicology and Applied Pharmacology, 2007, 219, 54-61.	1.3	17
54	Cytotoxic triterpenes from the aerial roots of Ficus microcarpa. Phytochemistry, 2005, 66, 495-501.	1.4	126

YI-MING CHIANG

#	Article	IF	CITATIONS
55	Ethyl caffeate suppresses NF-κ B activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2 in vitro or in mouse skin. British Journal of Pharmacology, 2005, 146, 352-363.	2.7	144
56	The distinct effects of a butanol fraction of Bidens pilosa plant extract on the development of Th1-mediated diabetes and Th2-mediated airway inflammation in mice. Journal of Biomedical Science, 2005, 12, 79-89.	2.6	39
57	Polyacetylenic Compounds and Butanol Fraction fromBidens pilosacan Modulate the Differentiation of Helper T Cells and Prevent Autoimmune Diabetes in Non-Obese Diabetic Mice. Planta Medica, 2004, 70, 1045-1051.	0.7	77
58	Metabolite profiling and chemopreventive bioactivity of plant extracts from Bidens pilosa. Journal of Ethnopharmacology, 2004, 95, 409-419.	2.0	144
59	Two novel α-tocopheroids from the aerial roots of Ficus microcarpa. Tetrahedron Letters, 2003, 44, 5125-5128.	0.7	49
60	Xanthones and Benzophenones from the Stems ofGarcinia multiflora. Journal of Natural Products, 2003, 66, 1070-1073.	1.5	63
61	Cytotoxic Constituents of the Leaves of <i>Calocedrus Formosana</i> . Journal of the Chinese Chemical Society, 2003, 50, 161-166.	0.8	44
62	Novel Triterpenoids from the Aerial Roots ofFicusmicrocarpa. Journal of Organic Chemistry, 2002, 67, 7656-7661.	1.7	39
63	New Peroxy Triterpenes from the Aerial Roots ofFicusmicrocarpa. Journal of Natural Products, 2001, 64, 436-439.	1.5	40
64	New Cyclopropyl-Triterpenoids from the Aerial Roots of Ficus microcarpa Chemical and Pharmaceutical Bulletin, 2001, 49, 581-583.	0.6	30
65	Three novel and one new lignan, chamaecypanones A, B, obtulignolide and isootobanone from the heartwood of Chamaecyparis obtusa var. formosana. Tetrahedron Letters, 2001, 42, 6731-6735.	0.7	21
66	Six New Ursane- and Oleanane-Type Triterpenes from the Aerial Roots of Ficus microcarpa Chemical and Pharmaceutical Bulletin, 2000, 48, 593-596.	0.6	32