
Louis A Schipper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2346180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing thermal acclimation of soil microbial respiration using macromolecular rate theory. Biogeochemistry, 2022, 158, 131-141.	1.7	10
2	The temperature and flow dependence of nitrate concentration and load estimates based on diffusive gradients in thin films. Journal of Environmental Quality, 2022, 51, 250-259.	1.0	1
3	Toward In-Field Determination of Nitrate Concentrations Via Diffusive Gradients in Thin Films─Incorporation of Reductants and Color Reagents. ACS Omega, 2022, 7, 10864-10876.	1.6	1
4	Bridge to the future: Important lessons from 20Âyears of ecosystem observations made by the OzFlux network. Global Change Biology, 2022, 28, 3489-3514.	4.2	14
5	Application of Diffusive Gradients in Thin Films for Monitoring Groundwater Quality. ACS ES&T Water, 2022, 2, 518-526.	2.3	4
6	Mitigating soil greenhouseâ€gas emissions from landâ€use change in tropical peatlands. Frontiers in Ecology and the Environment, 2022, 20, 352-360.	1.9	3
7	Large differences in CO2 emissions from two dairy farms on a drained peatland driven by contrasting respiration rates during seasonal dry conditions. Science of the Total Environment, 2021, 760, 143410.	3.9	8
8	High contribution of methane in greenhouse gas emissions from a eutrophic lake: a mass balance synthesis. New Zealand Journal of Marine and Freshwater Research, 2021, 55, 411-430.	0.8	7
9	Effectiveness of Denitrifying Bioreactors on Water Pollutant Reduction from Agricultural Areas. Transactions of the ASABE, 2021, 64, 641-658.	1.1	30
10	Improved gap filling approach and uncertainty estimation for eddy covariance N2O fluxes. Agricultural and Forest Meteorology, 2021, 297, 108280.	1.9	13
11	Livestock exclusion reduces the spillover effects of pastoral agriculture on soil bacterial communities in adjacent forest fragments. Environmental Microbiology, 2021, 23, 2919-2936.	1.8	6
12	Effect of soil cap and nitrate inflow on nitrous oxide emissions from woodchip bioreactors. Ecological Engineering, 2021, 166, 106235.	1.6	7
13	Soil organic matter turnover rates increase to match increased inputs in grazed grasslands. Biogeochemistry, 2021, 156, 145-160.	1.7	14
14	Soil microbial sensitivity to temperature remains unchanged despite community compositional shifts along geothermal gradients. Global Change Biology, 2021, 27, 6217-6231.	4.2	25
15	Development of bromide-selective Diffusive Gradients in Thin-Films for the measurement of average flow rate of streams. Science of the Total Environment, 2021, 788, 147737.	3.9	1
16	Impacts of irrigation on soil C and N stocks in grazed grasslands depends on aridity and irrigation duration. Geoderma, 2021, 399, 115109.	2.3	9
17	Separating the temperature response of soil respiration derived from soil organic matter and added labile carbon compounds. Geoderma, 2021, 400, 115128.	2.3	13
18	How close are we to the temperature tipping point of the terrestrial biosphere?. Science Advances, 2021, 7, .	4.7	102

#	Article	IF	CITATIONS
19	Characterizing porous microaggregates and soil organic matter sequestered in allophanic paleosols on Holocene tephras using synchrotron-based X-ray microscopy and spectroscopy. Scientific Reports, 2021, 11, 21310.	1.6	6
20	Nitrate Removal Performance of Denitrifying Woodchip Bioreactors in Tropical Climates. Water (Switzerland), 2021, 13, 3608.	1.2	4
21	Reconciling annual nitrous oxide emissions of an intensively grazed dairy pasture determined by eddy covariance and emission factors. Agriculture, Ecosystems and Environment, 2020, 287, 106646.	2.5	16
22	How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biology, 2020, 26, 219-241.	4.2	308
23	Recovery of the CO2 sink in a remnant peatland following water table lowering. Science of the Total Environment, 2020, 718, 134613.	3.9	9
24	Utility of â€~Diffusive Gradients in Thin-Films' for the measurement of nitrate removal performance of denitrifying bioreactors. Science of the Total Environment, 2020, 718, 135267.	3.9	8
25	Nitrate removal and greenhouse gas production of woodchip denitrification walls under a humid subtropical climate. Ecological Engineering, 2020, 156, 105988.	1.6	11
26	High-frequency, in situ sampling of field woodchip bioreactors reveals sources of sampling error and hydraulic inefficiencies. Journal of Environmental Management, 2020, 272, 110996.	3.8	7
27	The Inflection Point Hypothesis: The Relationship between the Temperature Dependence of Enzyme-Catalyzed Reaction Rates and Microbial Growth Rates. Biochemistry, 2020, 59, 3562-3569.	1.2	20
28	Quantifying carbon losses from periodic maize silage cropping of permanent temperate pastures. Agriculture, Ecosystems and Environment, 2020, 301, 107048.	2.5	12
29	Contrasting temperature responses of soil respiration derived from soil organic matter and added plant litter. Biogeochemistry, 2020, 150, 45-59.	1.7	17
30	Carbon, water and energy fluxes in agricultural systems of Australia and New Zealand. Agricultural and Forest Meteorology, 2020, 287, 107934.	1.9	15
31	Temperate grazed grassland carbon balances for two adjacent paddocks determined separately from one eddy covariance system. Agricultural and Forest Meteorology, 2020, 287, 107942.	1.9	10
32	Rapid carbon accumulation in a peatland following Late Holocene tephra deposition, New Zealand. Quaternary Science Reviews, 2020, 246, 106505.	1.4	16
33	A novel injection technique: using a field-based quantum cascade laser for the analysis of gas samples derived from static chambers. Atmospheric Measurement Techniques, 2020, 13, 5763-5777.	1.2	0
34	Shifts in temperature response of soil respiration between adjacent irrigated and non-irrigated grazed pastures. Agriculture, Ecosystems and Environment, 2019, 285, 106620.	2.5	21
35	Denitrification and anammox remove nitrogen in denitrifying bioreactors. Ecological Engineering, 2019, 138, 38-45.	1.6	20
36	Bacteria and virus removal in denitrifying bioreactors: Effects of media type and age. Ecological Engineering, 2019, 138, 46-53.	1.6	13

#	Article	IF	CITATIONS
37	Increased Duration of Drying–Rewetting Cycles Increases Nitrate Removal in Woodchip Bioreactors. Agricultural and Environmental Letters, 2019, 4, 190028.	0.8	8
38	Carbon budget of an intensively grazed temperate grassland with large quantities of imported supplemental feed. Agriculture, Ecosystems and Environment, 2019, 281, 1-15.	2.5	16
39	Toward optimisation of water use efficiency in dryland pastures using carbon isotope discrimination as a tool to select plant species mixtures. Science of the Total Environment, 2019, 665, 698-708.	3.9	15
40	Water table fluctuations control CO2 exchange in wet and dry bogs through different mechanisms. Science of the Total Environment, 2019, 655, 1037-1046.	3.9	26
41	Drying–Rewetting Cycles Affect Nitrate Removal Rates in Woodchip Bioreactors. Journal of Environmental Quality, 2019, 48, 93-101.	1.0	44
42	The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 2018, 121, 35-42.	4.2	68
43	Deforestation may increase soil carbon but it is unlikely to be continuous or unlimited. Global Change Biology, 2018, 24, 557-558.	4.2	6
44	Macromolecular rate theory (<scp>MMRT</scp>) provides a thermodynamics rationale to underpin the convergent temperature response in plant leaf respiration. Global Change Biology, 2018, 24, 1538-1547.	4.2	35
45	Forest canopy restoration has indirect effects on litter decomposition and no effect on denitrification. Ecosphere, 2018, 9, e02534.	1.0	15
46	Nitrous oxide fluxes determined by continuous eddy covariance measurements from intensively grazed pastures: Temporal patterns and environmental controls. Agriculture, Ecosystems and Environment, 2018, 268, 171-180.	2.5	28
47	Can Incorporating Brassica Tissues into Soil Reduce Nitrification Rates and Nitrous Oxide Emissions?. Journal of Environmental Quality, 2018, 47, 1436-1444.	1.0	2
48	Management practices to reduce losses or increase soil carbon stocks in temperate grazed grasslands: New Zealand as a case study. Agriculture, Ecosystems and Environment, 2018, 265, 432-443.	2.5	73
49	Sedimentary Environment Influences Ecosystem Response to Nutrient Enrichment. Estuaries and Coasts, 2018, 41, 1994-2008.	1.0	29
50	The carbon balance of temperate grasslands part II: The impact of pasture renewal via direct drilling. Agriculture, Ecosystems and Environment, 2017, 239, 132-142.	2.5	29
51	The carbon balance of temperate grasslands part I: The impact of increased species diversity. Agriculture, Ecosystems and Environment, 2017, 239, 310-323.	2.5	35
52	A review of soil carbon change in New Zealand's grazed grasslands. New Zealand Journal of Agricultural Research, 2017, 60, 93-118.	0.9	42
53	Rapid laboratory measurement of the temperature dependence of soil respiration and application to changes in three diverse soils through the year. Biogeochemistry, 2017, 133, 101-112.	1.7	27
54	Aligning agriculture and climate policy. Nature Climate Change, 2017, 7, 307-309.	8.1	213

#	Article	IF	CITATIONS
55	Isotope Tracing of Long-Term Cadmium Fluxes in an Agricultural Soil. Environmental Science & Technology, 2017, 51, 7369-7377.	4.6	58
56	The trade-offs between milk production and soil organic carbon storage in dairy systems under different management and environmental factors. Science of the Total Environment, 2017, 577, 61-72.	3.9	35
57	Macrofaunal Functional Diversity Provides Resilience to Nutrient Enrichment in Coastal Sediments. Ecosystems, 2017, 20, 1324-1336.	1.6	52
58	Do glucosinolate hydrolysis products reduce nitrous oxide emissions from urine affected soil?. Science of the Total Environment, 2017, 603-604, 370-380.	3.9	16
59	Carbon dioxide emissions and sediment organic carbon burials across a gradient of trophic state in eleven New Zealand lakes. Hydrobiologia, 2017, 795, 341-354.	1.0	13
60	The effect of irrigation on cadmium, uranium, and phosphorus contents in agricultural soils. Agriculture, Ecosystems and Environment, 2017, 247, 84-90.	2.5	14
61	Irrigating grazed pasture decreases soil carbon and nitrogen stocks. Global Change Biology, 2017, 23, 945-954.	4.2	62
62	Herbicide application during pasture renewal initially increases root turnover and carbon input to soil in perennial ryegrass and white clover pasture. Plant and Soil, 2017, 412, 133-142.	1.8	8
63	Southern Hemisphere bog persists as a strong carbon sink during droughts. Biogeosciences, 2017, 14, 4563-4576.	1.3	11
64	Use of the USDA National Cooperative Soil Survey Soil Characterization Data to Detect Soil Change: A Cautionary Tale. Soil Science Society of America Journal, 2017, 81, 1463-1474.	1.2	4
65	Moving Denitrifying Bioreactors beyond Proof of Concept: Introduction to the Special Section. Journal of Environmental Quality, 2016, 45, 757-761.	1.0	49
66	Fecal Bacteria, Bacteriophage, and Nutrient Reductions in a Full-Scale Denitrifying Woodchip Bioreactor. Journal of Environmental Quality, 2016, 45, 847-854.	1.0	22
67	A new method to extract and purify DNA from allophanic soils and paleosols, and potential for paleoenvironmental reconstruction and other applications. Geoderma, 2016, 274, 114-125.	2.3	13
68	Low spatial and inter-annual variability of evaporation from a year-round intensively grazed temperate pasture system. Agriculture, Ecosystems and Environment, 2016, 232, 46-58.	2.5	18
69	Cadmium accumulation in three contrasting New Zealand soils with the same phosphate fertilizer history. Geoderma Regional, 2016, 7, 271-278.	0.9	19
70	Denitrifying Bioreactors for Nitrate Removal: A Meta-Analysis. Journal of Environmental Quality, 2016, 45, 873-881.	1.0	185
71	MAGGnet: An international network to foster mitigation of agricultural greenhouse gases. Carbon Management, 2016, 7, 243-248.	1.2	7
72	DNA adsorption by nanocrystalline allophane spherules and nanoaggregates, and implications for carbon sequestration in Andisols. Applied Clay Science, 2016, 120, 40-50.	2.6	37

#	Article	IF	CITATIONS
73	On the Temperature Dependence of Enzyme-Catalyzed Rates. Biochemistry, 2016, 55, 1681-1688.	1.2	233
74	Estimates of annual leaching losses of dissolved organic carbon from pastures on Allophanic Soils grazed by dairy cattle, Waikato, New Zealand. New Zealand Journal of Agricultural Research, 2016, 59, 32-49.	0.9	14
75	Overriding control of methane flux temporal variability by water table dynamics in a Southern Hemisphere, raised bog. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 819-831.	1.3	44
76	Changes in characteristics of soils irrigated with processing wastewater from three New Zealand dairy factories. Soil Research, 2015, 53, 448.	0.6	3
77	Carbon and nitrogen leaching under high and low phosphate fertility pasture with increasing nitrogen inputs. Agriculture, Ecosystems and Environment, 2015, 202, 139-147.	2.5	25
78	Modelling carbon and water exchange of a grazed pasture in New Zealand constrained by eddy covariance measurements. Science of the Total Environment, 2015, 512-513, 273-286.	3.9	32
79	Convergence of soil nitrogen isotopes across global climate gradients. Scientific Reports, 2015, 5, 8280.	1.6	127
80	Variations in CO2 exchange for dairy farms with year-round rotational grazing on drained peatlands. Agriculture, Ecosystems and Environment, 2015, 202, 68-78.	2.5	37
81	High vapor pressure deficit constrains GPP and the light response of NEE at a Southern Hemisphere bog. Agricultural and Forest Meteorology, 2015, 203, 54-63.	1.9	32
82	Carbon balance of an intensively grazed temperate dairy pasture over four years. Agriculture, Ecosystems and Environment, 2015, 206, 10-20.	2.5	66
83	Root carbon inputs under moderately diverse sward and conventional ryegrass-clover pasture: implications for soil carbon sequestration. Plant and Soil, 2015, 392, 289-299.	1.8	61
84	Agricultural Intensification Exacerbates Spillover Effects on Soil Biogeochemistry in Adjacent Forest Remnants. PLoS ONE, 2015, 10, e0116474.	1.1	40
85	Changes in soil C, N and δ15N along three forest–pasture chronosequences in New Zealand. Soil Research, 2014, 52, 27.	0.6	19
86	Soil order and grazing management effects on changes in soil C and N in New Zealand pastures. Agriculture, Ecosystems and Environment, 2014, 184, 67-75.	2.5	56
87	Thermodynamic theory explains the temperature optima of soil microbial processes and high <i>Q</i> ₁₀ values at low temperatures. Global Change Biology, 2014, 20, 3578-3586.	4.2	163
88	Changes in soil total C and N contents at three chronosequences after conversion from plantation pine forest to dairy pasture on a New Zealand Pumice soil. Soil Research, 2014, 52, 38.	0.6	8
89	Soil C and N contents in a paired survey of dairy and dry stock pastures in New Zealand. Agriculture, Ecosystems and Environment, 2014, 185, 34-40.	2.5	9
90	Year-round growing conditions explains large CO2 sink strength in a New Zealand raised peat bog. Agricultural and Forest Meteorology, 2014, 192-193, 59-68.	1.9	35

#	Article	IF	CITATIONS
91	The joy of teaching soil science. Geoderma, 2014, 217-218, 1-9.	2.3	52
92	CO2 emissions following cultivation of a temperate permanent pasture. Agriculture, Ecosystems and Environment, 2014, 184, 21-33.	2.5	30
93	Subsidence Rates of Drained Agricultural Peatlands in New Zealand and the Relationship with Time since Drainage. Journal of Environmental Quality, 2014, 43, 1442-1449.	1.0	47
94	Carbon Storage and DNA Adsorption in Allophanic Soils and Paleosols. , 2014, , 163-172.		5
95	Utilizing soil indicators to explain historical vegetation changes of a peatland subjected to flood inundation. Ecohydrology, 2013, 6, 104-116.	1.1	0
96	Change in Heat Capacity for Enzyme Catalysis Determines Temperature Dependence of Enzyme Catalyzed Rates. ACS Chemical Biology, 2013, 8, 2388-2393.	1.6	164
97	Multiple small monthly doses of dicyandiamide (DCD) did not reduce denitrification in Waikato dairy pasture. New Zealand Journal of Agricultural Research, 2013, 56, 37-48.	0.9	5
98	Effects of prolonged oral administration of dicyandiamide to dairy heifers on excretion in urine and efficacy in soil. Agriculture, Ecosystems and Environment, 2013, 173, 28-36.	2.5	26
99	Influence of erosion and deposition on carbon and nitrogen accumulation in resampled steepland soils under pasture in New Zealand. Geoderma, 2013, 192, 154-159.	2.3	23
100	Effect of amending cattle urine with dicyandiamide on soil nitrogen dynamics and leaching of urinary-nitrogen. Agriculture, Ecosystems and Environment, 2013, 167, 12-22.	2.5	22
101	Evaluating 50Âyears of time-series soil radiocarbon data: towards routine calculation of robust C residence times. Biogeochemistry, 2013, 112, 129-137.	1.7	35
102	Artificial Sinks: Opportunities and Challenges for Managing Offsite Nitrogen Losses. Journal of Contemporary Water Research and Education, 2013, 151, 9-19.	0.7	6
103	Use of shallow samples to estimate the total carbon storage in pastoral soils. New Zealand Journal of Agricultural Research, 2013, 56, 86-90.	0.9	7
104	Priming of soil decomposition leads to losses of carbon in soil treated with cow urine. Soil Research, 2013, 51, 513.	0.6	16
105	Decadal Changes in Soil Carbon and Nitrogen under a Range of Irrigation and Phosphorus Fertilizer Treatments. Soil Science Society of America Journal, 2013, 77, 246-256.	1.2	38
106	Changes in Natural ¹⁵ N Abundance in Pastoral Soils Receiving Differing Amounts of Superphosphate Fertilizer and Irrigation for 50 Years. Soil Science Society of America Journal, 2013, 77, 830-841.	1.2	17
107	Nitrogen inputs and outputs for New Zealand from 1990 to 2010 at national and regional scales. New Zealand Journal of Agricultural Research, 2012, 55, 241-262.	0.9	30
108	Solubilisation of soil carbon following treatment with cow urine under laboratory conditions. Soil Research, 2012, 50, 50.	0.6	27

#	Article	IF	CITATIONS
109	Carbon leaching from undisturbed soil cores treated with dairy cow urine. Soil Research, 2012, 50, 320.	0.6	16
110	Hydraulic properties, hydraulic efficiency and nitrate removal of organic carbon media for use in denitrification beds. Ecological Engineering, 2012, 41, 1-7.	1.6	54
111	A comparison of different approaches for measuring denitrification rates in a nitrate removing bioreactor. Water Research, 2011, 45, 4141-4151.	5.3	42
112	Nitrate removal, communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds. Water Research, 2011, 45, 5463-5475.	5.3	253
113	Denitrification and Availability of Carbon and Nitrogen in a Well-drained Pasture Soil Amended with Particulate Organic Carbon. Journal of Environmental Quality, 2011, 40, 923-930.	1.0	12
114	Long-term nitrate removal in a denitrification wall. Agriculture, Ecosystems and Environment, 2011, 140, 514-520.	2.5	53
115	Rates of accumulation of cadmium and uranium in a New Zealand hill farm soil as a result of long-term use of phosphate fertilizer. Agriculture, Ecosystems and Environment, 2011, 144, 95-101.	2.5	83
116	Carbon balance of an intensively grazed temperate pasture in two climatically contrasting years. Agriculture, Ecosystems and Environment, 2011, 144, 271-280.	2.5	58
117	Trends in soil carbon and nutrients of hill-country pastures receiving different phosphorus fertilizer loadings for 20Âyears. Biogeochemistry, 2011, 104, 35-48.	1.7	29
118	Accumulation of soil organic C and change in C:N ratio after establishment of pastures on reverted scrubland in New Zealand. Biogeochemistry, 2011, 104, 49-58.	1.7	39
119	Denitrification Potential in Lake Sediment Increases Across a Gradient of Catchment Agriculture. Ecosystems, 2011, 14, 341-352.	1.6	62
120	Rates, controls and potential adverse effects of nitrate removal in a denitrification bed. Ecological Engineering, 2011, 37, 511-522.	1.6	176
121	Evaluation of passive solar heating and alternative flow regimes on nitrate removal in denitrification beds. Ecological Engineering, 2011, 37, 1195-1204.	1.6	26
122	Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter. Global Change Biology, 2010, 16, 3065-3074.	4.2	60
123	Gains and losses in C and N stocks of New Zealand pasture soils depend on land use. Agriculture, Ecosystems and Environment, 2010, 139, 611-617.	2.5	69
124	Relationship between soil δ15N, C/N and N losses across land uses in New Zealand. Agriculture, Ecosystems and Environment, 2010, 139, 736-741.	2.5	73
125	Nitrate removal from three different effluents using large-scale denitrification beds. Ecological Engineering, 2010, 36, 1552-1557.	1.6	97
126	Nitrate removal and hydraulic performance of organic carbon for use in denitrification beds. Ecological Engineering, 2010, 36, 1588-1595.	1.6	240

#	Article	IF	CITATIONS
127	Denitrifying bioreactors—An approach for reducing nitrate loads to receiving waters. Ecological Engineering, 2010, 36, 1532-1543.	1.6	459
128	Managing denitrification in human-dominated landscapes. Ecological Engineering, 2010, 36, 1503-1506.	1.6	14
129	Correcting bulk density measurements made with driving hammer equipment. Geoderma, 2010, 157, 46-50.	2.3	16
130	Nutritional niche separation in coexisting bog species demonstrated by ¹⁵ Nâ€enriched simulated rainfall. Austral Ecology, 2009, 34, 377-385.	0.7	10
131	Soil characteristics, belowground diversity and rates of simazine mineralisation of a New Zealand Gley Soil in a chronosequence under horticultural use. Biology and Fertility of Soils, 2008, 44, 633-640.	2.3	3
132	Oscillating peat surface levels in a restiad peatland, New Zealand—magnitude and spatiotemporal variability. Hydrological Processes, 2008, 22, 3264-3274.	1.1	46
133	In situ Mixing of Organic Matter Decreases Hydraulic Conductivity of Denitrification Walls in Sand Aquifers. Ground Water Monitoring and Remediation, 2008, 28, 57-64.	0.6	11
134	Nitrogen transformation in a denitrification layer irrigated with dairy factory effluent. Water Research, 2008, 42, 2457-2464.	5.3	29
135	Nitrogen inputs and outputs for New Zealand at national and regional scales: Past, present and future scenarios. Journal of the Royal Society of New Zealand, 2008, 38, 71-87.	1.0	21
136	Large losses of soil C and N from soil profiles under pasture in New Zealand during the past 20 years. Global Change Biology, 2007, 13, 1138-1144.	4.2	123
137	What is Soil Organic Matter Worth?. Journal of Environmental Quality, 2006, 35, 548-557.	1.0	69
138	Nutrient leaching and changes in soil characteristics of four contrasting soils irrigated with secondary-treated municipal wastewater for four years. Soil Research, 2006, 44, 107.	0.6	29
139	Nitrogen inputs and outputs for New Zealand in 2001Âat national and regional scales. Biogeochemistry, 2006, 80, 71-88.	1.7	65
140	Carbon exchange of grazed pasture on a drained peat soil. Global Change Biology, 2005, 11, 607-618.	4.2	111
141	Foliar 15N natural abundance indicates phosphorus limitation of bog species. Oecologia, 2005, 144, 550-557.	0.9	54
142	Land Application of Domestic Effluent onto Four Soil Types: Plant Uptake and Nutrient Leaching. Journal of Environmental Quality, 2005, 34, 635-643.	1.0	83
143	Maximum Rates of Nitrate Removal in a Denitrification Wall. Journal of Environmental Quality, 2005, 34, 1270-1276.	1.0	80
144	Pasture and forest soil microbial communities show distinct patterns in their catabolic respiration responses at a landscape scale. Soil Biology and Biochemistry, 2004, 36, 49-55.	4.2	63

#	Article	IF	CITATIONS
145	Hydraulic constraints on the performance of a groundwater denitrification wall for nitrate removal from shallow groundwater. Journal of Contaminant Hydrology, 2004, 69, 263-279.	1.6	82
146	Soil quality monitoring in New Zealand: trends and issues arising from a broad-scale survey. Agriculture, Ecosystems and Environment, 2004, 104, 545-552.	2.5	76
147	Soil quality monitoring in New Zealand: development of an interpretative framework. Agriculture, Ecosystems and Environment, 2004, 104, 535-544.	2.5	49
148	Soil quality monitoring in New Zealand: practical lessons from a 6-year trial. Agriculture, Ecosystems and Environment, 2004, 104, 523-534.	2.5	88
149	Microbial biomass, respiration and diversity in ultramafic soils of West Dome, New Zealand. Plant and Soil, 2004, 262, 151-158.	1.8	26
150	Vegetation and peat characteristics in the development of lowland restiad peat bogs, North Island, New Zealand. Wetlands, 2004, 24, 133-151.	0.7	51
151	Vegetation and peat characteristics of restiad bogs on Chatham Island (Rekohu), New Zealand. New Zealand Journal of Botany, 2004, 42, 293-312.	0.8	17
152	Site condition, fertility gradients and soil biological activity in a New Zealand frost-flat heathland. Pedobiologia, 2004, 48, 129-137.	0.5	8
153	An approach for estimating when soils will reach maximum nitrogen storage. Soil Use and Management, 2004, 20, 281-286.	2.6	5
154	An approach for estimating when soils will reach maximum nitrogen storage. Soil Use and Management, 2004, 20, 281-286.	2.6	49
155	Recovery of topsoil characteristics after landslip erosion in dry hill country of New Zealand, and a test of the space-for-time hypothesis. Soil Biology and Biochemistry, 2003, 35, 1575-1586.	4.2	98
156	Three Approaches to Define Desired Soil Organic Matter Contents. Journal of Environmental Quality, 2003, 32, 760.	1.0	14
157	Soil Quality at a National Scale in New Zealand. Journal of Environmental Quality, 2002, 31, 1848-1857.	1.0	87
158	Restoring cut-over restiad peat bogs: A factorial experiment of nutrients, seed and cultivation. Ecological Engineering, 2002, 19, 29-40.	1.6	18
159	Subsidence rates and carbon loss in peat soils following conversion to pasture in the Waikato Region, New Zealand. Soil Use and Management, 2002, 18, 91-93.	2.6	51
160	Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance?. Soil Biology and Biochemistry, 2001, 33, 1143-1153.	4.2	255
161	Changes in microbial heterotrophic diversity along five plant successional sequences. Soil Biology and Biochemistry, 2001, 33, 2093-2103.	4.2	132
162	Five years of nitrate removal, denitrification and carbon dynamics in a denitrification wall. Water Research, 2001, 35, 3473-3477.	5.3	148

#	Article	IF	CITATIONS
163	Changes in soil properties after application of dairy factory effluent to New Zealand volcanic ash and pumice soils. Soil Research, 2001, 39, 505.	0.6	47
164	Regulation of Nitrous Oxide Emissions from Soils Irrigated with Dairy Farm Effluent. Journal of Environmental Quality, 2001, 30, 1881-1887.	1.0	50
165	Irrigation of an allophanic soil with dairy factory effluent for 22 years: responses of nutrient storage and soil biota. Soil Research, 2000, 38, 25.	0.6	61
166	Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust. Ecological Engineering, 2000, 14, 269-278.	1.6	122
167	Denitrification enzyme activity is limited by soil aeration in a wastewater-irrigated forest soil. Biology and Fertility of Soils, 2000, 32, 385-389.	2.3	23
168	Resistance to cropping pressure of two New Zealand soils with contrasting mineralogy. Soil Research, 2000, 38, 85.	0.6	24
169	Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biology and Biochemistry, 2000, 32, 189-196.	4.2	311
170	Performance of Soil Condition Indicators Across Taxonomic Groups and Land Uses. Soil Science Society of America Journal, 2000, 64, 300-311.	1.2	107
171	Topsoil characteristics of three contrasting New Zealand soils under four longâ€ŧerm land uses. New Zealand Journal of Agricultural Research, 2000, 43, 569-583.	0.9	37
172	Soil Quality Indicators On The World Wide Web. IFIP Advances in Information and Communication Technology, 2000, , 131-141.	0.5	2
173	Denitrification Rates in a Wastewater-Irrigated Forest Soil in New Zealand. Journal of Environmental Quality, 1999, 28, 2008-2014.	1.0	25
174	Annual denitrification rates in agricultural and forest soils: a review. Soil Research, 1999, 37, 1073.	0.6	222
175	Hydraulic conductivity in soils irrigated with wastewaters of differing strengths: Field and laboratory studies. Soil Research, 1999, 37, 391.	0.6	75
176	Preferential flow in a well drained and a poorly drained soil under different overhead irrigation regimes. Soil Use and Management, 1998, 14, 96-100.	2.6	29
177	Hot-water-soluble C as a simple measure of labile soil organic matter: The relationship with microbial biomass C. Soil Biology and Biochemistry, 1998, 30, 1469-1472.	4.2	279
178	Nitrate Removal from Groundwater Using a Denitrification Wall Amended with Sawdust: Field Trial. Journal of Environmental Quality, 1998, 27, 664-668.	1.0	123
179	Procedures for characterising denitrification rates in a wastewater-irrigated forest soil. Soil Research, 1998, 36, 997.	0.6	1
180	Determination of Methane Oxidation in the Rhizosphere of Sagittaria lancifolia Using Methyl Fluoride. Soil Science Society of America Journal, 1996, 60, 611-616.	1.2	60

#	Article	IF	CITATIONS
181	Impact of Landâ€Applied Tertiaryâ€Treated Effluent on Soil Biochemical Properties. Journal of Environmental Quality, 1996, 25, 1073-1077.	1.0	77
182	In Situ Determination of Detrital Breakdown in Wetland Soil-Floodwater Profile. Soil Science Society of America Journal, 1995, 59, 565-568.	1.2	16
183	Methane Production and Emissions from Four Reclaimed and Pristine Wetlands of Southeastern United States. Soil Science Society of America Journal, 1994, 58, 1270-1275.	1.2	34
184	An inverse relationship between nitrate and ammonium in an organic riparian soil. Soil Biology and Biochemistry, 1994, 26, 799-800.	4.2	8
185	Anaerobic Decomposition and Denitrification during Plant Decomposition in an Organic Soil. Journal of Environmental Quality, 1994, 23, 923-928.	1.0	31
186	Regulators of denitrification in an organic riparian soil. Soil Biology and Biochemistry, 1993, 25, 925-933.	4.2	130
187	Nitrogen renovation by denitrification in forest sewage irrigation systems. Biological Wastes, 1989, 29, 181-187.	0.3	8