Easo P George

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2346115/publications.pdf

Version: 2024-02-01

200 papers 31,178 citations

14614 66 h-index 173

201 all docs

201 does citations

times ranked

201

9953 citing authors

g-index

#	Article	IF	CITATIONS
1	A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345, 1153-1158.	6.0	3,982
2	The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 2013, 61, 5743-5755.	3.8	2,352
3	High-entropy alloys. Nature Reviews Materials, 2019, 4, 515-534.	23.3	2,188
4	Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Materialia, 2014, 81, 428-441.	3.8	1,387
5	Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nature Communications, 2016, 7, 10602.	5.8	1,175
6	Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Materialia, 2013, 61, 2628-2638.	3.8	1,004
7	Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Materialia, 2015, 96, 258-268.	3.8	952
8	Tensile properties of high- and medium-entropy alloys. Intermetallics, 2013, 39, 74-78.	1.8	892
9	Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Materialia, 2016, 118, 152-163.	3.8	823
10	Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Materialia, 2017, 128, 292-303.	3.8	803
11	Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Materialia, 2010, 58, 3444-3458.	3.8	696
12	The correlation of the indentation size effect measured with indenters of various shapes. Journal of the Mechanics and Physics of Solids, 2002, 50, 681-694.	2.3	692
13	Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics, 2014, 46, 131-140.	1.8	671
14	Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Materialia, 2016, 112, 40-52.	3.8	653
15	Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nature Communications, 2015, 6, 10143.	5 . 8	608
16	Softening Caused by Profuse Shear Banding in a Bulk Metallic Glass. Physical Review Letters, 2006, 96, 105503.	2.9	380
17	Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nature Communications, 2017, 8, 14390.	5.8	344
18	Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. Journal of Alloys and Compounds, 2015, 623, 348-353.	2.8	331

#	Article	IF	CITATIONS
19	Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy. Scientific Reports, 2016, 6, 35863.	1.6	316
20	Effects of pre-strain on the compressive stress–strain response of Mo-alloy single-crystal micropillars. Acta Materialia, 2008, 56, 4762-4770.	3.8	287
21	Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique. Scripta Materialia, 2007, 57, 397-400.	2.6	260
22	Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries. Intermetallics, 2014, 54, 39-48.	1.8	257
23	Recent advances in B2 iron aluminide alloys: deformation, fracture and alloy design. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 258, 84-98.	2.6	253
24	A different type of indentation size effect. Scripta Materialia, 2008, 59, 1095-1098.	2.6	238
25	Microstructures and mechanical properties of a directionally solidified NiAl–Mo eutectic alloy. Acta Materialia, 2005, 53, 69-77.	3.8	222
26	Brittle fracture and grain boundary chemistry of microalloyed NiAl. Journal of Materials Research, 1990, 5, 754-762.	1.2	215
27	Environmental embrittlement in boron-free and boron-doped FeAl (40 at. % Al) alloys. Scripta Metallurgica Et Materialia, 1990, 24, 1285-1290.	1.0	215
28	Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy. Journal of Alloys and Compounds, 2018, 746, 244-255.	2.8	215
29	Phase stability and kinetics of lf -phase precipitation in CrMnFeCoNi high-entropy alloys. Acta Materialia, 2018, 161, 338-351.	3.8	209
30	Influence of Indenter Tip Geometry on Elastic Deformation during Nanoindentation. Physical Review Letters, 2005, 95, 045501.	2.9	196
31	Effects of focused ion beam milling on the compressive behavior of directionally solidified micropillars and the nanoindentation response of an electropolished surface. Acta Materialia, 2009, 57, 503-510.	3.8	194
32	Oxidation Behavior of the CrMnFeCoNi High-Entropy Alloy. Oxidation of Metals, 2016, 85, 629-645.	1.0	190
33	Size Effects and Stochastic Behavior of Nanoindentation Pop In. Physical Review Letters, 2011, 106, 165502.	2.9	189
34	Theoretical Strength and the Onset of Plasticity in Bulk Metallic Glasses Investigated by Nanoindentation with a Spherical Indenter. Physical Review Letters, 2004, 93, 125504.	2.9	184
35	Atomic displacement in the CrMnFeCoNi high-entropy alloy $\hat{a} \in A$ scaling factor to predict solid solution strengthening. AIP Advances, 2016, 6, .	0.6	183
36	Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy. Jom, 2015, 67, 2262-2270.	0.9	177

#	Article	IF	CITATIONS
37	Atomic-scale characterization and modeling of $60 {\hat A}^\circ$ dislocations in a high-entropy alloy. Acta Materialia, 2016, 110, 352-363.	3.8	167
38	Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium- to high-entropy alloys at cryogenic temperatures. Materials Today, 2019, 25, 21-27.	8.3	167
39	Strength differences arising from homogeneous versus heterogeneous dislocation nucleation. Physical Review B, 2008, 77, .	1.1	166
40	Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures. Intermetallics, 2015, 58, 62-64.	1.8	161
41	Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi. Intermetallics, 2017, 88, 65-72.	1.8	160
42	Microstructural evolution of a CoCrFeMnNi high-entropy alloy after swaging and annealing. Journal of Alloys and Compounds, 2015, 647, 548-557.	2.8	158
43	The emergent field of high entropy oxides: Design, prospects, challenges, and opportunities for tailoring material properties. APL Materials, 2020, 8, .	2.2	152
44	Dislocation starvation and exhaustion hardening in Mo alloy nanofibers. Acta Materialia, 2012, 60, 2258-2264.	3.8	145
45	Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy. Nature, 2021, 595, 245-249.	13.7	141
46	Influence of deformation induced nanoscale twinning and FCC-HCP transformation on hardening and texture development in medium-entropy CrCoNi alloy. Acta Materialia, 2018, 158, 38-52.	3.8	135
47	Environmental embrittlement: The major cause of room-temperature brittleness in polycrystalline Ni3Al. Scripta Metallurgica Et Materialia, 1992, 27, 365-370.	1.0	134
48	Investigation of strain-induced martensitic transformation in metastable austenite using nanoindentation. Scripta Materialia, 2010, 63, 540-543.	2.6	134
49	Atomistic processes of dislocation generation and plastic deformation during nanoindentation. Acta Materialia, 2011, 59, 934-942.	3.8	134
50	Thermal activation parameters of plastic flow reveal deformation mechanisms in the CrMnFeCoNi high-entropy alloy. Acta Materialia, 2018, 143, 257-264.	3.8	132
51	Intrinsic ductility and environmental embrittlement of binary Ni3Al. Scripta Metallurgica Et Materialia, 1993, 28, 857-862.	1.0	126
52	Magnetic properties of the CrMnFeCoNi high-entropy alloy. Physical Review B, 2017, 96, .	1.1	124
53	Brittle cleavage of L1 ₂ trialuminides. Journal of Materials Research, 1990, 5, 1639-1648.	1.2	113
54	Intergranular fracture and grain boundary chemistry of Ni3Al and Ni3Si. Scripta Metallurgica, 1985, 19, 551-556.	1.2	112

#	Article	IF	Citations
55	Indentation Schmid factor and orientation dependence of nanoindentation pop-in behavior of NiAl single crystals. Journal of the Mechanics and Physics of Solids, 2011, 59, 1147-1162.	2.3	106
56	Direct Metal Deposition of Refractory High Entropy Alloy MoNbTaW. Physics Procedia, 2016, 83, 624-633.	1.2	106
57	Hardness and shear band evolution in bulk metallic glasses after plastic deformation and annealing. Acta Materialia, 2008, 56, 5202-5213.	3.8	103
58	Deformation and fracture of intermetallics. Acta Metallurgica Et Materialia, 1993, 41, 987-1002.	1.9	86
59	Deformation and Fracture of L12 Trialuminides ISIJ International, 1991, 31, 1063-1075.	0.6	85
60	Incipient plasticity and deformation mechanisms in single-crystal Mg during spherical nanoindentation. Acta Materialia, 2013, 61, 2953-2965.	3.8	83
61	Effect of vacuum on room-temperature ductility of Ni3Al. Scripta Metallurgica Et Materialia, 1994, 30, 37-42.	1.0	80
62	Effects of cryogenic temperature and grain size on fatigue-crack propagation in the medium-entropy CrCoNi alloy. Acta Materialia, 2020, 200, 351-365.	3.8	76
63	Temperature and load-ratio dependent fatigue-crack growth in the CrMnFeCoNi high-entropy alloy. Journal of Alloys and Compounds, 2019, 794, 525-533.	2.8	74
64	Ductilization of Mo–Si solid solutions manufactured by powder metallurgy. Acta Materialia, 2009, 57, 3895-3901.	3.8	73
65	Effects of deviations from stoichiometry on the strength anomaly and fracture behavior of B-doped FeAl. Intermetallics, 1995, 3, 433-441.	1.8	71
66	Columnar to equiaxed transition and grain refinement of cast CrCoNi medium-entropy alloy by microalloying with titanium and carbon. Journal of Alloys and Compounds, 2019, 775, 1068-1076.	2.8	71
67	Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys. Materials and Design, 2017, 115, 479-485.	3.3	68
68	Characterization of deformation anisotropies in an \hat{l}_{\pm} -Ti alloy by nanoindentation and electron microscopy. Acta Materialia, 2013, 61, 4743-4756.	3.8	67
69	Grain-boundary fracture and boron effect in Ni3Si alloys. Intermetallics, 1996, 4, 77-83.	1.8	66
70	Mechanical behavior of Ni3Al: Effects of environment, strain rate, temperature and boron doping. Acta Materialia, 1996, 44, 1757-1763.	3.8	65
71	Directional solidification and microstructures of near-eutectic Cr–Cr3Si alloys. Acta Materialia, 2003, 51, 6241-6252.	3.8	65
72	Size-dependent plasticity and fracture of a metallic glass in compression. Intermetallics, 2008, 16, 485-489.	1.8	65

#	Article	IF	Citations
73	Influences of surface preparation on nanoindentation pop-in in single-crystal Mo. Scripta Materialia, 2011, 65, 469-472.	2.6	63
74	High-Temperature Creep and Oxidation Behavior of Mo-Si-B Alloys with High Ti Contents. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 1102-1111.	1.1	63
75	Comparison of grain boundary compositions in B-doped and B-free Ni3Al. Scripta Metallurgica, 1989, 23, 979-982.	1.2	62
76	Thermal Vacancies and High-Temperature Mechanical Properties of FeAl. Physica Status Solidi A, 1997, 160, 531-540.	1.7	62
77	Thermal vacancies and the yield anomaly of FeAl. Intermetallics, 1998, 6, 759-763.	1.8	62
78	Fabrication of Ni3Al thin foil by cold-rolling. Intermetallics, 2001, 9, 157-167.	1.8	62
79	Cooling-rate induced softening in a Zr50Cu50 bulk metallic glass. Applied Physics Letters, 2007, 90, 071909.	1.5	62
80	Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends. Additive Manufacturing, 2019, 25, 252-262.	1.7	62
81	Environmental Embrittlement in FeAl Aluminides ISIJ International, 1991, 31, 1192-1200.	0.6	60
82	Cleavage fracture in an Al ₃ Ti-based alloy having the Ll ₂ structure. Journal of Materials Research, 1989, 4, 78-84.	1.2	57
83	Room-temperature mechanical behavior of FeAl: effects of stoichiometry, environment, and boron addition. Acta Materialia, 1998, 46, 6245-6256.	3.8	56
84	Plastic deformation of single crystals of the equiatomic Crâ^'Mnâ^'Feâ^'Coâ^'Ni high-entropy alloy in tension and compression from 10ÂK to 1273ÂK. Acta Materialia, 2021, 203, 116454.	3.8	56
85	Determining the activation energies and slip systems for dislocation nucleation in body-centered cubic Mo and face-centered cubic Ni single crystals. Scripta Materialia, 2011, 65, 179-182.	2.6	53
86	Environmental embrittlement and other causes of brittle grain boundary fracture in Ni3Al. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 1995, 192-193, 277-288.	2.6	51
87	Mechanical properties of soft magnetic FeCo alloys. Materials Science & Description of Structural Materials: Properties, Microstructure and Processing, 2002, 329-331, 325-333.	2.6	51
88	Effects of Ti, Zr, and Hf on the phase stability of Mo_ss + Mo3Si + Mo5SiB2 alloys at 1600°C. Acta Materialia, 2010, 58, 541-548.	3.8	51
89	Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass. International Journal of Plasticity, 2015, 71, 136-145.	4.1	49
90	A review of directionally solidified intermetallic composites for high-temperature structural applications. Journal of Materials Science, 2004, 39, 3975-3984.	1.7	48

#	Article	IF	Citations
91	Laser metal deposition of a refractory TiZrNbHfTa high-entropy alloy. Additive Manufacturing, 2018, 24, 386-390.	1.7	47
92	Ordering effects on deformation substructures and strain hardening behavior of a CrCoNi based medium entropy alloy. Acta Materialia, 2021, 210, 116829.	3.8	47
93	Effects of Cr/Ni ratio on physical properties of Cr-Mn-Fe-Co-Ni high-entropy alloys. Acta Materialia, 2022, 227, 117693.	3.8	47
94	Relationship between yield point phenomena and the nanoindentation pop-in behavior of steel. Journal of Materials Research, 2012, 27, 39-44.	1.2	45
95	The room temperature strengthening effect of boron as a function of aluminum concentration in FeAl. Intermetallics, 1998, 6, 177-183.	1.8	44
96	Yielding and flow behavior of Mo5Si3 single crystals. Scripta Materialia, 2001, 45, 1321-1326.	2.6	44
97	Elastic constants of single crystal Cr3Si and Cr–Cr3Si lamellar eutectic composites: a comparison of ultrasonic and nanoindentation measurements. Scripta Materialia, 2004, 51, 875-879.	2.6	44
98	Oxygen effects on plastic deformation of a Zr-based bulk metallic glass. Applied Physics Letters, 2008, 92, .	1.5	44
99	A stochastic model for the size dependence of spherical indentation pop-in. Journal of Materials Research, 2013, 28, 2728-2739.	1.2	42
100	Effects of boron and grain size on the strain-rate sensitivity of Fe-45Al. Scripta Metallurgica Et Materialia, 1994, 30, 863-868.	1.0	41
101	A simple stochastic model for yielding in specimens with limited number of dislocations. Acta Materialia, 2013, 61, 2489-2499.	3.8	41
102	Fabrication and tensile properties of continuous-fiber reinforced Ni ₃ Al–Al ₂ O ₃ composites. Journal of Materials Research, 1991, 6, 1673-1679.	1.2	40
103	Insights into the deformation behavior of the CrMnFeCoNi high-entropy alloy revealed by elevated temperature nanoindentation. Journal of Materials Research, 2017, 32, 2658-2667.	1.2	40
104	Effect of low-pressure hydrogen on the room-temperature tensile ductility and fracture behavior of Ni3Al. Intermetallics, 1996, 4, 497-502.	1.8	39
105	Effects of composition on lamellar microstructures of near-eutectic Cr–Cr3Si alloys. Intermetallics, 2003, 11, 283-289.	1.8	39
106	On Local Phase Equilibria and the Appearance of Nanoparticles in the Microstructure of Single rystal Niâ€Base Superalloys. Advanced Engineering Materials, 2016, 18, 1556-1567.	1.6	39
107	Microstructure, Texture, and Strength Development during High-Pressure Torsion of CrMnFeCoNi High-Entropy Alloy. Crystals, 2020, 10, 336.	1.0	39
108	Tensile and compressive plastic deformation behavior of medium-entropy Cr-Co-Ni single crystals from cryogenic to elevated temperatures. International Journal of Plasticity, 2022, 148, 103144.	4.1	39

#	Article	IF	CITATIONS
109	Tensile ductility, slow crack growth, and fracture mode of ternary B2 iron aluminides at room temperature. Intermetallics, 1997, 5, 185-193.	1.8	37
110	Specimen Size Effects on Zr-Based Bulk Metallic Glasses Investigated by Uniaxial Compression and Spherical Nanoindentation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1735-1742.	1.1	37
111	Scanning transmission electron microscope observations of defects in as-grown and pre-strained Mo alloy fibers. Acta Materialia, 2011, 59, 2172-2179.	3.8	37
112	Synthesis, characterization, and nanoindentation response of single crystal Fe–Cr–Ni alloys with FCC and BCC structures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 611, 177-187.	2.6	37
113	Characterization, processing, and alloy design of NiAl-based shape memory alloys. Materials Characterization, 1994, 32, 139-160.	1.9	36
114	Effects of focused ion beam milling and pre-straining on the microstructure of directionally solidified molybdenum pillars: A Laue diffraction analysis. Scripta Materialia, 2010, 62, 746-749.	2.6	34
115	Scale effects in convoluted thermal/spatial statistics of plasticity initiation in small stressed volumes during nanoindentation. Materials Science and Technology, 2012, 28, 1055-1059.	0.8	34
116	Phase-specific deformation behavior of a relatively tough NiAl–Cr(Mo) lamellar composite. Scripta Materialia, 2014, 84-85, 59-62.	2.6	34
117	Enhanced plasticity in a Zr-based bulk metallic glass composite with <i>in situ</i> formed intermetallic phases. Applied Physics Letters, 2009, 95, .	1.5	33
118	Creep cavitation in iron—l. Sulfides and carbides as nucleation sites. Acta Metallurgica, 1987, 35, 2471-2486.	2.1	31
119	Creep in directionally solidified NiAl–Mo eutectics. Scripta Materialia, 2011, 65, 699-702.	2.6	31
120	HYDROGEN-BORON INTERACTION AND ITS EFFECT ON THE DUCTILITY AND FRACTURE OF Ni3Al. Acta Materialia, 1997, 45, 2801-2811.	3.8	30
121	Thermal stability of Cr–Cr3Si eutectic microstructures. Acta Materialia, 2009, 57, 3823-3829.	3.8	29
122	In-situ tensile testing of single-crystal molybdenum-alloy fibers with various dislocation densities in a scanning electron microscope. Journal of Materials Research, 2012, 27, 508-520.	1.2	28
123	Effects of boron on the fracture behavior and ductility of cast Ti–6Al–4V alloys. Scripta Materialia, 2015, 100, 90-93.	2.6	28
124	PVD synthesis and high-throughput property characterization of Ni–Fe–Cr alloy libraries. Measurement Science and Technology, 2005, 16, 46-53.	1.4	27
125	Laser metal deposition of refractory high-entropy alloys for high-throughput synthesis and structure-property characterization. International Journal of Extreme Manufacturing, 2021, 3, 015201.	6.3	27
126	Role of deformation twinning in fatigue of CrCoNi medium-entropy alloy at room temperature. Scripta Materialia, 2021, 202, 113985.	2.6	27

#	Article	IF	CITATIONS
127	Grain boundary cohesion and fracture in ordered intermetallics. Scripta Metallurgica Et Materialia, 1991, 25, 1259-1264.	1.0	25
128	Dependence of the yield stress of Fe3Al on heat treatment. Intermetallics, 2012, 21, 56-61.	1.8	25
129	Pinning of dislocations and the origin of the stress anomaly in FeAl alloys. Intermetallics, 1999, 7, 1059-1068.	1.8	24
130	Microstructure and texture evolution during severe plastic deformation of CrMnFeCoNi high-entropy alloy. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012028.	0.3	24
131	Spatially resolved strain measurements in Mo-alloy micropillars by differential aperture x-ray microscopy. Applied Physics Letters, 2008, 93, 071904.	1.5	23
132	An Auger investigation of the fracture behavior of PST TiAl alloys. Intermetallics, 1997, 5, 281-288.	1.8	22
133	Grain-boundary segregation of impurities in iridium and effects on mechanical properties. Acta Materialia, 2001, 49, 289-298.	3.8	22
134	Deformation behavior of Mo5Si3 single crystal at high temperatures. Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 329-331, 228-234.	2.6	22
135	High-entropy materials. MRS Bulletin, 2022, 47, 145-150.	1.7	22
136	Microstructure, compression and fracture behavior of Al3Sc. Scripta Metallurgica Et Materialia, 1990, 24, 1069-1074.	1.0	21
137	Characterization, Processing, and Alloy Design of NiAl-Based Shape Memory Alloys. Materials Characterization, 1997, 39, 665-686.	1.9	21
138	Review of Trace Element Effects on High-Temperature Fracture of Fe- and Ni-Base Alloys. Physica Status Solidi A, 1998, 167, 313-333.	1.7	21
139	On the onset of deformation twinning in the CrFeMnCoNi high-entropy alloy using a novel tensile specimen geometry. Intermetallics, 2019, 110, 106469.	1.8	21
140	Rapid structural and chemical characterization of ternary phase diagrams using synchrotron radiation. Journal of Materials Research, 2003, 18, 2522-2527.	1.2	20
141	Vacancy strengthening in Fe3Al iron aluminides. Intermetallics, 2014, 54, 95-103.	1.8	20
142	Elemental segregation to lattice defects in the CrMnFeCoNi high-entropy alloy during high temperature exposures. Acta Materialia, 2021, 208, 116719.	3.8	20
143	Microstructure-dependent phase stability and precipitation kinetics in equiatomic CrMnFeCoNi high-entropy alloy: Role of grain boundaries. Acta Materialia, 2022, 223, 117470.	3.8	20
144	Experimental and modelling characterisation of residual stresses in cylindrical samples of rapidly cooled bulk metallic glass. Materials and Design, 2016, 104, 235-241.	3.3	19

#	Article	IF	CITATIONS
145	Thermal-expansion behavior of a directionally solidified NiAl–Mo composite investigated by neutron diffraction and dilatometry. Journal of Applied Physics, 2005, 97, 123503.	1.1	18
146	Shear fracture of bulk metallic glasses with controlled applied normal stresses. Scripta Materialia, 2008, 59, 111-114.	2.6	18
147	3D x-ray microprobe investigation of local dislocation densities and elastic strain gradients in a NiAl-Mo composite and exposed Mo micropillars as a function of prestrain. Journal of Materials Research, 2010, 25, 199-206.	1.2	18
148	Influence of fiber alignment on creep in directionally solidified NiAl–10Mo in-situ composites. Intermetallics, 2013, 35, 110-115.	1.8	18
149	Fracture in Ni3Al: Environmental and Dopant Effects. Physica Status Solidi A, 1997, 160, 517-529.	1.7	17
150	Impurity effects on high-temperature tensile ductility of iridium alloys at high strain rate. Scripta Materialia, 1999, 42, 9-15.	2.6	17
151	Deformation and fracture of iridium: microalloying effects. Materials Science & Deformation and Fracture of Iridium: microalloying effects. Materials Science & Deformation A: Structural Materials: Properties, Microstructure and Processing, 2001, 319-321, 466-470.	2.6	17
152	Thermal diffusion and compositional inhomogeneity in cast Zr50Cu50 bulk metallic glass. Applied Physics Letters, 2006, 89, 051919.	1.5	17
153	The yield strength anomaly of single-slip-oriented Fe–Al single crystals. Intermetallics, 2007, 15, 103-107.	1.8	17
154	Characterization of dislocation structures and deformation mechanisms in as-grown and deformed directionally solidified NiAl–Mo composites. Acta Materialia, 2015, 89, 315-326.	3.8	17
155	Creep cavitation in iron—ll. Oxides as nucleation sites. Acta Metallurgica, 1987, 35, 2487-2495.	2.1	16
156	Metastable phase evolution and grain growth in annealed nanocrystalline Cr–Fe–Ni films. Thin Solid Films, 2005, 493, 307-312.	0.8	16
157	Small-scale mechanical behavior of intermetallics and their composites. Materials Science & Camp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 483-484, 218-222.	2.6	16
158	Effect of boron on the fracture behavior and grain boundary chemistry of Ni3Fe. Scripta Materialia, 2011, 64, 303-306.	2.6	15
159	Dynamic Highâ€ŧemperature Testing of an Iridium Alloy in Compression at Highâ€strain Rates. Strain, 2014, 50, 539-546.	1.4	15
160	Re effects on phase stability and mechanical properties of MoSS+Mo3Si+Mo5SiB2 alloys. Journal of Alloys and Compounds, 2013, 556, 32-38.	2.8	14
161	Influence of cerium additions on high-temperature-impact ductility and fracture behavior of iridium alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28, 2049-2057.	1.1	13
162	Segregation of lutetium and yttrium to grain boundaries in iridium alloys. Acta Materialia, 1998, 46, 893-902.	3.8	13

#	Article	IF	CITATIONS
163	Synthesis and characterization of lamellar and fibre-reinforced NiAl-Mo and NiAl-Cr. Journal of Physics: Conference Series, 2010, 240, 012063.	0.3	13
164	An Auger investigation of the grain-boundary chemistry in Ni3(Si,Ti) alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 245, 80-87.	2.6	11
165	Compositional variations in equiatomic CrMnFeCoNi high-entropy alloys. Materials Characterization, 2021, 180, 111437.	1.9	11
166	Deformation mechanisms in crystalline-amorphous high-entropy composite multilayers. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 848, 143144.	2.6	11
167	Effect of Vacancies on the Tensile Properties of Fe-40Al Single Crystals in Air and Vacuum. Materials Characterization, 1999, 42, 161-167.	1.9	10
168	Growth of intermetallic layers in the iridium-molybdenum system. Journal of Alloys and Compounds, 1991, 177, 219-227.	2.8	9
169	Shape memory properties of a two-phase NiAl plus Fe alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 192-193, 873-880.	2.6	9
170	Creep ductility of Crî—,Moî—,V steels: Impurity and microstructural effects. Scripta Metallurgica, 1986, 20, 1775-1779.	1.2	8
171	Preparation of ternary alloy libraries for high-throughput screening of material properties by means of thick film deposition and interdiffusion: Benefits and limitations. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1788-1792.	0.9	8
172	The Soret effect in bulk metallic glasses. Intermetallics, 2007, 15, 557-563.	1.8	8
173	Controlled normal/shear loading and shear fracture in bulk metallic glasses. Intermetallics, 2009, 17, 802-810.	1.8	8
174	Effects of boron on the microstructure and thermal stability of directionally solidified NiAl–Mo eutectic. Acta Materialia, 2010, 58, 421-428.	3.8	8
175	The role of edge and screw dislocations on hydrogen embrittlement of Fe–40Al. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2001, 319-321, 352-355.	2.6	7
176	Nanoindentation of pseudoelastic NiTi containing Ni ₄ Ti ₃ precipitates. International Journal of Materials Research, 2012, 103, 1434-1439.	0.1	7
177	Creep damage nucleation sites in ferrous alloys. Materials Science & Department of the Creep damage nucleation sites in ferrous alloys. Materials Science & Department of the Creep damage nucleation sites in ferrous alloys. Materials: Properties, Microstructure and Processing, 1988, 103, 97-102.	2.6	6
178	Influence of grain boundary composition on the moisture-induced embrittlement of Ni3(Si,Ti) alloys. Intermetallics, 1999, 7, 543-551.	1.8	6
179	The effects of environment on the room-temperature mechanical behavior of single-slip oriented FeAl single crystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 329-331, 729-733.	2.6	6
180	Effects of alloying elements on dendritic segregation in iridium alloys. Journal of Alloys and Compounds, 2008, 459, 130-134.	2.8	6

#	Article	IF	CITATIONS
181	Formation, stability and crystal structure of the σ phase in Mo–Re–Si alloys. Acta Materialia, 2010, 58, 6027-6034.	3.8	6
182	Yield strength dependence on strain rate of molybdenum-alloy nanofibers. Applied Physics Letters, 2014, 104, 251909.	1.5	6
183	The effect of low-pressure oxygen exposure on the high-temperature tensile impact ductility of a thorium-doped iridium alloy. Scripta Materialia, 1996, 35, 181-185.	2.6	5
184	Fabrication of large-grained binary stoichiometric Ni3Al. Scripta Materialia, 1998, 40, 63-69.	2.6	5
185	Effects of processing on the microstructure and mechanical behavior of binary Cr–Ta alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 329-331, 696-702.	2.6	5
186	Surface hardening of high- and medium-entropy alloys by mechanical attrition at room and cryogenic temperatures. Applied Physics Letters, 2021, 119, 201912.	1.5	5
187	The effects of boron on the high temperature ductility of iron and steel. Scripta Metallurgica, 1986, 20, 1785-1789.	1.2	4
188	The effect of oxygen on auger electron spectroscopy of FeAl and NiAl. Scripta Metallurgica Et Materialia, 1990, 24, 2095-2099.	1.0	4
189	Grain-growth behavior and low-pressure oxygen compatibility of an Ir-0.3 wt.% W alloy. Journal of Alloys and Compounds, 1996, 244, 175-183.	2.8	4
190	Boron contaminations and their kinetics in Ni3(Si,Ti) alloys. Intermetallics, 1998, 6, 369-377.	1.8	4
191	Effect of alloy stoichiometry on grain boundary chemistry and fracture behavior of directionally solidified Ni3Al. Intermetallics, 1997, 5, 425-432.	1.8	3
192	Effects of precipitate size and spacing on deformation-induced fcc to bcc phase transformation. Materials Research Letters, 2022, 10, 585-592.	4.1	3
193	The effects of austenitization temperature on the high temperature ductility of Fe-P-S Alloys. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1988, 19, 887-892.	1.4	2
194	Reply to "A Comment on Hydrogen-Boron Interaction and Its Effect on the Ductility and Fracture of Ni3Al― Scripta Materialia, 1998, 38, 847-850.	2.6	2
195	Influence of iridium on the martensitic transformation in Ni–Ti shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 378, 170-174.	2.6	2
196	Effect of quenching temperature on grain boundary chemistry and mechanical properties of Ni3(Si,Ti). Scripta Materialia, 1997, 38, 287-292.	2.6	1
197	Grain growth behaviour and high strain rate tensile properties of gas tungsten arc welds in iridium alloy DOP–26. Science and Technology of Welding and Joining, 2000, 5, 297-303.	1.5	1
198	SEM & STEM Multi-scale Characterization of Fatigue Damage in CrCoNi Medium-entropy Alloy with Fully Recrystallized Microstructure. Microscopy and Microanalysis, 2020, 26, 2224-2225.	0.2	1

#	Article	IF	CITATIONS
199	Microstructures and Mechanical Properties of in-situ V-V3B2 Composites. Materials Research Society Symposia Proceedings, 2006, 980, 5.	0.1	O
200	Cores of $1/2 < 110 >$ -type dislocations in the CrMnFeCoNi high-entropy alloy investigated by STEM, the center of symmetry and the Nye tensor mapping techniques. Microscopy and Microanalysis, 2021, 27, 3098-3099.	0.2	0