
John R Varcoe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2345703/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anion-exchange membranes in electrochemical energy systems. Energy and Environmental Science, 2014, 7, 3135-3191.	15.6	1,617
2	Prospects for Alkaline Anion-Exchange Membranes in Low Temperature FuelÂCells. Fuel Cells, 2005, 5, 187-200.	1.5	1,147
3	Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chemical Society Reviews, 2009, 38, 1926.	18.7	395
4	Poly(ethylene-co-tetrafluoroethylene)-Derived Radiation-Grafted Anion-Exchange Membrane with Properties Specifically Tailored for Application in Metal-Cation-Free Alkaline Polymer Electrolyte Fuel Cells. Chemistry of Materials, 2007, 19, 2686-2693.	3.2	371
5	An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells. Electrochemistry Communications, 2006, 8, 839-843.	2.3	279
6	Steady-State dc and Impedance Investigations of H2/O2Alkaline Membrane Fuel Cells with Commercial Pt/C, Ag/C, and Au/C Cathodes. Journal of Physical Chemistry B, 2006, 110, 21041-21049.	1.2	268
7	An alkaline polymer electrochemical interface: a breakthrough in application of alkaline anion-exchange membranes in fuel cells. Chemical Communications, 2006, , 1428.	2.2	257
8	Alkaline anion-exchange radiation-grafted membranes for possible electrochemical application in fuel cells. Journal of Materials Chemistry, 2003, 13, 712-721.	6.7	252
9	Investigations of conductivity in FEP-based radiation-grafted alkaline anion-exchange membranes. Solid State Ionics, 2005, 176, 585-597.	1.3	240
10	High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells. Nature Energy, 2021, 6, 834-843.	19.8	238
11	Activated Carbon Cloth as Anode for Sulfate Removal in a Microbial Fuel Cell. Environmental Science & Technology, 2008, 42, 4971-4976.	4.6	236
12	Importance of balancing membrane and electrode water in anion exchange membrane fuel cells. Journal of Power Sources, 2018, 375, 205-213.	4.0	236
13	Beyond catalysis and membranes: visualizing and solving the challenge of electrode water accumulation and flooding in AEMFCs. Energy and Environmental Science, 2018, 11, 551-558.	15.6	229
14	Anion-exchange membranes for alkaline polymer electrolyte fuel cells: comparison of pendent benzyltrimethylammonium- and benzylmethylimidazolium-head-groups. Energy and Environmental Science, 2012, 5, 8584.	15.6	224
15	Radiation-grafted anion-exchange membranes: the switch from low- to high-density polyethylene leads to remarkably enhanced fuel cell performance. Energy and Environmental Science, 2019, 12, 1575-1579.	15.6	223
16	High performance aliphatic-heterocyclic benzyl-quaternary ammonium radiation-grafted anion-exchange membranes. Energy and Environmental Science, 2016, 9, 3724-3735.	15.6	215
17	Development of imidazolium-type alkaline anion exchange membranes for fuel cell application. Journal of Membrane Science, 2012, 415-416, 242-249.	4.1	205
18	Beneficial use of rotatable-spacer side-chains in alkaline anion exchange membranes for fuel cells. Energy and Environmental Science, 2018, 11, 3472-3479.	15.6	196

#	Article	IF	CITATIONS
19	A high conductivity ultrathin anion-exchange membrane with 500+ h alkali stability for use in alkaline membrane fuel cells that can achieve 2 W cm ^{â^'2} at 80 °C. Journal of Materials Chemistry A, 2018, 6, 15404-15412.	5.2	177
20	Comparison of PVDF- and FEP-based radiation-grafted alkaline anion-exchange membranes for use in low temperature portable DMFCs. Journal of Materials Chemistry, 2002, 12, 3371-3373.	6.7	172
21	The radiation-grafting of vinylbenzyl chloride onto poly(hexafluoropropylene-co-tetrafluoroethylene) films with subsequent conversion to alkaline anion-exchange membranes: optimisation of the experimental conditions and characterisation. Journal of Membrane Science. 2003. 218. 147-163.	4.1	171
22	Non-fluorinated pre-irradiation-grafted (peroxidated) LDPE-based anion-exchange membranes with high performance and stability. Energy and Environmental Science, 2017, 10, 2154-2167.	15.6	159
23	A Carbon Dioxide Tolerant Aqueousâ€Electrolyteâ€Free Anionâ€Exchange Membrane Alkaline Fuel Cell. ChemSusChem, 2008, 1, 79-81.	3.6	154
24	Alkali resistant and conductive guanidinium-based anion-exchange membranes for alkaline polymer electrolyte fuel cells. Journal of Power Sources, 2012, 217, 373-380.	4.0	148
25	Novel silica/poly(2,6-dimethyl-1,4-phenylene oxide) hybrid anion-exchange membranes for alkaline fuel cells: Effect of silica content and the single cell performance. Journal of Power Sources, 2010, 195, 3069-3076.	4.0	144
26	An optimised synthesis of high performance radiation-grafted anion-exchange membranes. Green Chemistry, 2017, 19, 831-843.	4.6	141
27	Water Uptake Study of Anion Exchange Membranes. Macromolecules, 2018, 51, 3264-3278.	2.2	141
28	Alkaline polymer electrolytes containing pendant dimethylimidazolium groups for alkaline membrane fuel cells. Journal of Materials Chemistry A, 2013, 1, 7262.	5.2	135
29	Investigations of the ex situ ionic conductivities at 30 ŰC of metal-cation-free quaternary ammonium alkaline anion-exchange membranes in static atmospheres of different relative humidities. Physical Chemistry Chemical Physics, 2007, 9, 1479-1486.	1.3	125
30	A Role for Microbial Palladium Nanoparticles in Extracellular Electron Transfer. Angewandte Chemie - International Edition, 2011, 50, 427-430.	7.2	121
31	Nitrogenâ€doped Carbon–CoO _{<i>x</i>} Nanohybrids: A Precious Metal Free Cathode that Exceeds 1.0â€W cm ^{â°'2} Peak Power and 100â€h Life in Anionâ€Exchange Membrane Fuel C Angewandte Chemie - International Edition, 2019, 58, 1046-1051.	Cetls2	117
32	Factors affecting the performance of microbial fuel cells for sulfur pollutants removal. Biosensors and Bioelectronics, 2009, 24, 1931-1936.	5.3	114
33	Novel alkaline anion exchange membranes containing pendant benzimidazolium groups for alkaline fuel cells. Journal of Membrane Science, 2013, 443, 193-200.	4.1	113
34	Using operando techniques to understand and design high performance and stable alkaline membrane fuel cells. Nature Communications, 2020, 11, 3561.	5.8	113
35	Investigations into the ex situ methanol, ethanol and ethylene glycol permeabilities of alkaline polymer electrolyte membranes. Journal of Power Sources, 2007, 173, 194-199.	4.0	108
36	Novel electrolyte membranes and non-Pt catalysts for low temperature fuel cells. Solid State Ionics, 2010, 181, 219-222.	1.3	108

#	Article	IF	CITATIONS
37	Comparative performance of ion exchange membranes for electrodialysis of nickel and cobalt. Separation and Purification Technology, 2003, 30, 113-127.	3.9	103
38	Preparation of radiation-grafted powders for use as anion exchange ionomers in alkaline polymer electrolyte fuel cells. Journal of Materials Chemistry A, 2014, 2, 5124-5130.	5.2	103
39	Aromatic polyelectrolytes via polyacylation of pre-quaternized monomers for alkaline fuel cells. Journal of Materials Chemistry A, 2013, 1, 2595.	5.2	97
40	Nafion/polyaniline composite membranes specifically designed to allow proton exchange membrane fuel cells operation at low humidity. Journal of Power Sources, 2009, 189, 1016-1019.	4.0	91
41	Beyond 1.0ÂW cm ^{â^'2} Performance without Platinum: The Beginning of a New Era in Anion Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2018, 165, J3039-J3044.	1.3	91
42	Thermal crosslinking of an alkaline anion exchange membrane bearing unsaturated side chains. Journal of Membrane Science, 2015, 490, 1-8.	4.1	87
43	Interplay between water uptake, ion interactions, and conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) anion exchange membrane. Physical Chemistry Chemical Physics, 2015, 17, 4367-4378.	1.3	83
44	Dynamic changes in the microbial community composition in microbial fuel cells fed with sucrose. Applied Microbiology and Biotechnology, 2012, 93, 423-437.	1.7	79
45	A high-temperature anion-exchange membrane fuel cell. Journal of Power Sources Advances, 2020, 5, 100023.	2.6	76
46	Extracellular Electron Transfer Mediated by Flavins in Gram-positive Bacillus sp. WS-XY1 and Yeast Pichia stipitis. Electrochimica Acta, 2014, 146, 564-567.	2.6	74
47	Quantifying and elucidating the effect of CO ₂ on the thermodynamics, kinetics and charge transport of AEMFCs. Energy and Environmental Science, 2019, 12, 2806-2819.	15.6	74
48	Direct electron transfer of glucose oxidase immobilized in an ionic liquid reconstituted cellulose–carbon nanotube matrix. Bioelectrochemistry, 2009, 77, 64-68.	2.4	70
49	The first anion-exchange membrane fuel cell to exceed 1 W cm ^{â^'2} at 70 °C with a non-Pt-group (O ₂) cathode. Chemical Communications, 2017, 53, 11771-11773.	2.2	70
50	The alkali stability of radiation-grafted anion-exchange membranes containing pendent 1-benzyl-2,3-dimethylimidazolium head-groups. RSC Advances, 2013, 3, 579-587.	1.7	69
51	ETFE-based anion-exchange membrane ionomer powders for alkaline membrane fuel cells: a first performance comparison of head-group chemistry. Journal of Materials Chemistry A, 2018, 6, 24330-24341.	5.2	67
52	Facile Preparation of an Ether-Free Anion Exchange Membrane with Pendant Cyclic Quaternary Ammonium Groups. ACS Applied Energy Materials, 2019, 2, 4576-4581.	2.5	63
53	Oxygen reduction at the silver/hydroxide-exchange membrane interface. Electrochemistry Communications, 2008, 10, 151-155.	2.3	60
54	Cross-linked anion exchange membranes for alkaline fuel cells synthesized using a solvent free strategy. Journal of Power Sources, 2013, 233, 259-268.	4.0	57

#	Article	IF	CITATIONS
55	Ionomer Cross-Linking Immobilization of Catalyst Nanoparticles for High Performance Alkaline Membrane Fuel Cells. Chemistry of Materials, 2019, 31, 7812-7820.	3.2	57
56	A one-compartment fructose/air biological fuel cell based on direct electron transfer. Biosensors and Bioelectronics, 2009, 25, 326-331.	5.3	56
57	Palladium–Ceria Catalysts with Enhanced Alkaline Hydrogen Oxidation Activity for Anion Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2019, 2, 4999-5008.	2.5	56
58	High-Performing PGM-Free AEMFC Cathodes from Carbon-Supported Cobalt Ferrite Nanoparticles. Catalysts, 2019, 9, 264.	1.6	53
59	Cation–dipole interaction that creates ordered ion channels in an anion exchange membrane for fast <scp>OH</scp> ^{â^'} conduction. AICHE Journal, 2021, 67, e17133.	1.8	53
60	Halloysite-derived nitrogen doped carbon electrocatalysts for anion exchange membrane fuel cells. Journal of Power Sources, 2017, 372, 82-90.	4.0	52
61	Radiation-induced grafting of a butyl-spacer styrenic monomer onto ETFE: the synthesis of the most alkali stable radiation-grafted anion-exchange membrane to date. Journal of Materials Chemistry A, 2018, 6, 823-827.	5.2	52
62	Development of Cathode Architectures Customized for H2/O2Metal-Cation-Free Alkaline Membrane Fuel Cells. Journal of Physical Chemistry C, 2007, 111, 18423-18430.	1.5	51
63	Strategies for Reducing the PGM Loading in High Power AEMFC Anodes. Journal of the Electrochemical Society, 2018, 165, F710-F717.	1.3	48
64	Ionic Liquid-Modified Microporous ZnCoNC-Based Electrocatalysts for Polymer Electrolyte Fuel Cells. ACS Energy Letters, 2019, 4, 2104-2110.	8.8	48
65	Practical <i>ex-Situ</i> Technique To Measure the Chemical Stability of Anion-Exchange Membranes under Conditions Simulating the Fuel Cell Environment. , 2020, 2, 168-173.		48
66	Development of a novel highly conductive and flexible cotton yarn for wearable pH sensor technology. Sensors and Actuators B: Chemical, 2019, 287, 338-345.	4.0	46
67	A novel reference electrode for application in alkaline polymer electrolyte membrane fuel cells. Electrochemistry Communications, 2010, 12, 823-825.	2.3	45
68	Synthesis, structure and conductivity of sulfate and phosphate doped SrCoO3. Journal of Solid State Chemistry, 2011, 184, 2972-2977.	1.4	45
69	Mechanical Characterization of Anion Exchange Membranes by Extensional Rheology under Controlled Hydration. Journal of the Electrochemical Society, 2014, 161, H677-H683.	1.3	41
70	Spatiotemporal development of the bacterial community in a tubular longitudinal microbial fuel cell. Applied Microbiology and Biotechnology, 2011, 90, 1179-1191.	1.7	39
71	Development of CaMn _{1â[^]x} Ru _x O _{3â[^]y} (x = 0 and 0.15) oxygen reduction catalysts for use in low temperature electrochemical devices containing alkaline electrolytes: ex situ testing using the rotating ring-disk electrode voltammetry method. Journal of Materials Chemistry A. 2014. 2. 3047-3056.	5.2	37
72	Facile preparation of novel cardo Poly(oxindolebiphenylylene) with pendent quaternary ammonium by superacid-catalysed polyhydroxyalkylation reaction for anion exchange membranes. Journal of Membrane Science, 2019, 591, 117320.	4.1	37

#	Article	IF	CITATIONS
73	Alkaline ionomer with tuneable water uptakes for electrochemical energy technologies. Energy and Environmental Science, 2011, 4, 4925.	15.6	36
74	Fabrication and Optimization of Fiber-Based Lithium Sensor: A Step toward Wearable Sensors for Lithium Drug Monitoring in Interstitial Fluid. ACS Sensors, 2018, 3, 1802-1810.	4.0	35
75	CeO ₂ Modulates the Electronic States of a Palladium Onion-Like Carbon Interface into a Highly Active and Durable Electrocatalyst for Hydrogen Oxidation in Anion-Exchange-Membrane Fuel Cells. ACS Catalysis, 2022, 12, 7014-7029.	5.5	33
76	Methylated polybenzimidazole and its application as a blend component in covalently cross-linked anion-exchange membranes for DMFC. Journal of Membrane Science, 2014, 465, 129-137.	4.1	32
77	Nitrogenâ€doped Carbon–CoO _{<i>x</i>} Nanohybrids: A Precious Metal Free Cathode that Exceeds 1.0â€W cm ^{â^'2} Peak Power and 100â€h Life in Anionâ€Exchange Membrane Fuel C Angewandte Chemie, 2019, 131, 1058-1063.	ellso	32
78	Disentangling water, ion and polymer dynamics in an anion exchange membrane. Nature Materials, 2022, 21, 555-563.	13.3	32
79	Effect of reacting gas flowrates and hydration on the carbonation of anion exchange membrane fuel cells in the presence of CO2. Journal of Power Sources, 2020, 467, 228350.	4.0	30
80	Salt splitting with radiation grafted PVDF anion-exchange membrane. Electrochemistry Communications, 2003, 5, 115-119.	2.3	29
81	Integration of a Pd-CeO ₂ /C Anode with Pt and Pt-Free Cathode Catalysts in High Power Density Anion Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2020, 3, 10209-10214.	2.5	29
82	Radiation-grafted PVDF anion exchange membrane for salt splitting. Desalination, 2005, 174, 257-265.	4.0	27
83	Electron Communication of Bacillus subtilis in Harsh Environments. IScience, 2019, 12, 260-269.	1.9	27
84	Membrane and Electrode Materials for Alkaline Membrane Fuel Cells. ECS Transactions, 2008, 16, 1819-1834.	0.3	26
85	Carbonate Dynamics and Opportunities With Low Temperature, Anion Exchange Membrane-Based Electrochemical Carbon Dioxide Separators. Journal of Electrochemical Energy Conversion and Storage, 2017, 14, .	1.1	25
86	A high-temperature anion-exchange membrane fuel cell with a critical raw material-free cathode. Chemical Engineering Journal Advances, 2021, 8, 100153.	2.4	25
87	An experimental study on the placement of reference electrodes in alkaline polymer electrolyte membrane fuel cells. Electrochimica Acta, 2010, 56, 607-619.	2.6	24
88	3Dâ€Zipped Interface: In Situ Covalent‣ocking for High Performance of Anion Exchange Membrane Fuel Cells. Advanced Science, 2021, 8, e2102637.	5.6	21
89	Examination of Amine-Functionalised Anion-Exchange Membranes for Possible Use in the All-Vanadium Redox Flow Battery. Electrochimica Acta, 2014, 140, 145-151.	2.6	20
90	Effect of cationic molecules on the oxygen reduction reaction on fuel cell grade Pt/C (20 wt%) catalyst in potassium hydroxide (aq, 1 mol dm ^{â^'3}). Physical Chemistry Chemical Physics, 2015, 17, 12135-12145.	1.3	20

#	Article	IF	CITATIONS
91	The alkali degradation of LDPE-based radiation-grafted anion-exchange membranes studied using different e <i>x situ</i> methods. RSC Advances, 2020, 10, 36467-36477.	1.7	20
92	Salt splitting with radiation grafted PVDF membranes. Desalination, 2003, 151, 275-282.	4.0	19
93	Reshaping the Cathodic Catalyst Layer for Anion Exchange Membrane Fuel Cells: From Heterogeneous Catalysis to Homogeneous Catalysis. Angewandte Chemie - International Edition, 2021, 60, 4049-4054.	7.2	19
94	Reduction of the monomer quantities required for the preparation of radiation-grafted alkaline anion-exchange membranes. Solid State Ionics, 2015, 277, 38-43.	1.3	18
95	A Raman spectro-microscopic investigation of ETFE-based radiation-grafted anion-exchange membranes. RSC Advances, 2017, 7, 47726-47737.	1.7	18
96	Understanding how single-atom site density drives the performance and durability of PGM-free Fe–N–C cathodes in anion exchange membrane fuel cells. Materials Today Advances, 2021, 12, 100179.	2.5	18
97	Commercial Monomer Availability Leading to Missed Opportunities? Anion-Exchange Membranes Made from <i>meta</i> -Vinylbenzyl Chloride Exhibit an Alkali Stability Enhancement. ACS Applied Energy Materials, 2018, 1, 1883-1887.	2.5	17
98	Impact of 1 mmol dmâ^'3 concentrations of small molecules containing nitrogen-based cationic groups on the oxygen reduction reaction on polycrystalline platinum in aqueous KOH (1 mol dmâ^'3). Physical Chemistry Chemical Physics, 2013, 15, 18992.	1.3	16
99	Textile-based non-invasive lithium drug monitoring: A proof-of-concept study for wearable sensing. Biosensors and Bioelectronics, 2020, 150, 111897.	5.3	16
100	Alkaline Anion Exchange Membranes for Fuel Cells- A Patent Review. Recent Patents on Chemical Engineering, 2011, 4, 93-115.	0.5	15
101	Radiation-grafted cation-exchange membranes: an initial <i>ex situ</i> feasibility study into their potential use in reverse electrodialysis. Sustainable Energy and Fuels, 2019, 3, 1682-1692.	2.5	14
102	Isoindolinium Groups as Stable Anion Conductors for Anion-Exchange Membrane Fuel Cells and Electrolyzers. ACS Materials Au, 2022, 2, 367-373.	2.6	14
103	Alkaline Electrolytes and Reference Electrodes for Alkaline Polymer Electrolyte Membrane Fuel Cells. ECS Transactions, 2010, 33, 27-35.	0.3	13
104	An empirical study into the effect of long term storage (â^'36±2°C) of electron-beamed ETFE on the properties of radiation-grafted alkaline anion-exchange membranes. Radiation Physics and Chemistry, 2013, 89, 64-69.	1.4	13
105	Measuring the alkaline stability of anion-exchange membranes. Journal of Electroanalytical Chemistry, 2022, 908, 116112.	1.9	13
106	Proton conductivity in siloxane and ormosil ionomers prepared using mild sulfonation methodologies. Solid State Ionics, 2001, 145, 127-133.	1.3	12
107	The reaction between Nafion sulfonyl fluoride precursor membrane and 1,4-dimethylpiperazine does not yield reliable anion-exchange membranes. Journal of Materials Chemistry A, 2013, 1, 1018-1021.	5.2	12
108	Paradox phenomena of proton exchange membrane fuel cells operating under dead-end anode mode. Journal of Power Sources, 2014, 265, 45-49.	4.0	12

#	Article	IF	CITATIONS
109	A ditopic calix[4]pyrrole amide derivative: highlighting the importance of fundamental studies and the use of NaPh ₄ B as additive in the design and applications of mercury(<scp>ii</scp>) ion selective electrodes. Journal of Materials Chemistry A, 2015, 3, 13016-13030.	5.2	12
110	Improving Performance in Alkaline Membrane Fuel Cells through Enhanced Water Management. ECS Transactions, 2016, 75, 949-954.	0.3	11
111	Realisation of siloxane ionomers by mild oxidation of alkylmercaptosiloxanes. Journal of Materials Chemistry, 1999, 9, 3015-3021.	6.7	10
112	Alkaline Membrane Fuel Cells. , 2013, , 9-29.		10
113	Editors' Choice—Power-Generating Electrochemical CO ₂ Scrubbing from Air Enabling Practical AEMFC Application. Journal of the Electrochemical Society, 2021, 168, 024504.	1.3	9
114	Radiation-grafted anion-exchange membranes for reverse electrodialysis: a comparison of <i>N</i> , <i>N</i> , <i>N</i> ,i>N,i>R	5.2	9
115	Effect of carbonate anions on Bi-doped Ca ₂ Ru ₂ O ₇ pyrochlores that are potential cathode catalysts for low temperature carbonate fuel cells. RSC Advances, 2014, 4, 30035-30045.	1.7	6
116	An optimised glucose oxidase bioelectrode exhibiting high performance direct electron transfer. Physical Chemistry Chemical Physics, 2012, 14, 9582.	1.3	4
117	Alkaline Anion Exchange Membranes for Fuel Cells- A Patent Review. Recent Patents on Chemical Engineering, 2011, 4, 93-115.	0.5	3
118	Realisation of ORMOSIL ionomers by the crosslinking of propyl methacrylate siloxane and a protected styrenesulfonic acid. Journal of Materials Chemistry, 2000, 10, 849-858.	6.7	2
119	Strategies for Reducing the PGM Loading in High Power AEMFC Anodes. ECS Transactions, 2018, 85, 873-887.	0.3	2
120	Special Section on Anion Exchange Membranes and AEM-Based Systems. Journal of Electrochemical Energy Conversion and Storage, 2017, 14, .	1.1	1
121	Polypyrrole Fibre Electrodes for Drug Sensing. Proceedings (mdpi), 2020, 32, .	0.2	1
122	Thread-Based Sensors. Proceedings (mdpi), 2019, 32, 22.	0.2	1
123	Reduced Graphene Oxide Fibre Electrodes for Drug Sensing. Proceedings (mdpi), 2021, 68, .	0.2	1
124	Improving the Long-Term Operational Stability (>1000h) of AEMFCS By Understanding Water Dynamics through in-Situ Neutron Imaging and X-Ray Computed Tomography. ECS Meeting Abstracts, 2019, , .	0.0	1
125	(Invited) Novel Insights in the Activity, Selectivity and Durability of Fenc, Mn-Oxides and Fenc/Mn-Oxide Composites for ORR Catalysis in Alkaline Electrolyte and AEMFC. ECS Meeting Abstracts, 2019, , .	0.0	1
126	A Raman Spectroscopy Investigation into the Alkaline Stabilities of Hydrated Anion-Exchange Head-Groups Relevant to Alkaline Membrane Fuel Cells. ECS Meeting Abstracts, 2012, , .	0.0	0

#	Article	IF	CITATIONS
127	Materials development: general discussion. Faraday Discussions, 2015, 182, 307-328.	1.6	0
128	Alkaline Membrane Fuel Cells. , 2019, , 439-453.		0
129	Understanding the Influence of Fe-N-C Cathode Catalyst Structure on Their Performance and Durability in High Performing Anion Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2021, MA2021-01, 1833-1833.	0.0	0
130	Alkaline Membrane Fuel Cells. , 2017, , 1-16.		0
131	(Invited) Low Ionic Resistance Radiation-Grafted Cation- and Anion-Exchange Membranes for Reverse Electrodialysis (salinity gradient power) Application: Cross-Linking Is Essential for High Permselectivities ECS Meeting Abstracts, 2019, , .	0.0	0
132	Understanding the Fundamental Drivers for Performance Losses in Operating AEMFCS in the Presence of CO2. ECS Meeting Abstracts, 2019, , .	0.0	0
133	(Invited) Switching from Low-Density to High-Density Polyethylene As a Base Material for Radiation-Grafted Anion-Exchange Membranes Leads to Much Higher Alkaline Membrane Fuel Cell Performances. ECS Meeting Abstracts, 2019, , .	0.0	0
134	A Raman Spectroscopic Study of Radiation-Grafted Anion-Exchange Membranes Containing Different Anions. ECS Meeting Abstracts, 2020, MA2020-01, 1641-1641.	0.0	0
135	(Invited) Cross-Linked Radiation-Grafted Anion-Exchange Membranes for Energy Conversion Systems: When to Cross-Link?. ECS Meeting Abstracts, 2021, MA2021-02, 1296-1296.	0.0	0
136	Ex-Situ Technique to Measure the Chemical Stability of Anion Exchange Membranes Simulating in-Operando Anion Exchange Membrane Fuel Cell Test Environment. ECS Meeting Abstracts, 2021, MA2021-02, 1136-1136.	0.0	0
137	Understanding the Activity and Stability of Single-Atom Catalysts for the ORR in Anion Exchange Membrane Fuel Cell(AEMFCs). ECS Meeting Abstracts, 2021, MA2021-02, 1211-1211.	0.0	Ο
138	(Invited) Electrode and Cell-Level Insights to Achieve High Performance and Long-Life AEM Fuel Cells and Electrolyzers. ECS Meeting Abstracts, 2021, MA2021-02, 1293-1293.	0.0	0
139	High-Temperature Anion-Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2021, MA2021-02, 1209-1209.	0.0	0
140	The Latest Developments in Radiation-Grafted Anion-Exchange Polymer Electrolytes for Low Temperature Electrochemical Systems. ECS Meeting Abstracts, 2022, MA2022-01, 1443-1443.	0.0	0