## Pawe $\AA$, Wo $\AA^{\circ} n y$

## List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/2345640/publications.pdf
Version: 2024-02-01
31
papers
$1 \quad$ Fast and accurate evaluation of dual Bernstein polynomials. Numerical Algorithms, 2021, 87, 1001-1015. 1.1

2 Linear-time geometric algorithm for evaluating BÃ@zier curves. CAD Computer Aided Design, 2020, 118, 102760.

Differential-recurrence properties of dual Bernstein polynomials. Applied Mathematics and
Computation, 2018, 338, 537-543.

New properties of a certain method of summation of generalized hypergeometric series. Numerical
Algorithms, 2017, 76, 377-391.

Constrained approximation of rational triangular BÃ©zier surfaces by polynomial triangular BÃ@zier
surfaces. Numerical Algorithms, 2017, 75, 93-111.

BÃ©zier form of dual bivariate Bernstein polynomials. Advances in Computational Mathematics, 2017, 43, 777-793.

Degree reduction of composite BÃ@zier curves. Applied Mathematics and Computation, 2017, 293, 40-48.
1.4

Merging of BÃ©zier curves with box constraints. Journal of Computational and Applied Mathematics, 2016, 296, 265-274.

G k,l -constrained multi-degree reduction of BÃ©zier curves. Numerical Algorithms, 2016, 71, 121-137.
1.1

Efficient merging of multiple segments of BÃ`zier curves. Applied Mathematics and Computation, 2015, 268, 354-363.

Construction of dualB-spline functions. Journal of Computational and Applied Mathematics, 2014, 260,
301-311.

A short note on Jacobiâ€"Bernstein connection coefficients. Applied Mathematics and Computation, 2013, 222, 53-57.

Structure relations for the bivariate big q-Jacobi polynomials. Applied Mathematics and Computation, 2013, 219, 8790-8802.

14 Construction of dual bases. Journal of Computational and Applied Mathematics, 2013, 245, 75-85.
1.1

Simple algorithms for computing the BÃ©zier coefficients of the constrained dual Bernstein polynomials. Applied Mathematics and Computation, 2012, 219, 2521-2525.

Polynomial approximation of rational BÃ@zier curves withÂconstraints. Numerical Algorithms, 2012, 59, 607-622.

BÃ@zier representation of the constrained dual Bernstein polynomials. Applied Mathematics and
1.4

Computation, 2011, 218, 4580-4586.

Multi-degree reduction of tensor product BÃ©zier surfaces with general boundary constraints. Applied
Mathematics and Computation, 2011, 217, 4596-4611.

On the convergence of the method for indefinite integration of oscillatory and singular functions.
Applied Mathematics and Computation, 2010, 216, 989-998.

Efficient algorithm for summation of some slowly convergent series. Applied Numerical Mathematics, 2010, 60, 1442-1453.
1.2

Two-variable orthogonal polynomials of big q-Jacobi type. Journal of Computational and Applied Mathematics, 2010, 233, 1554-1561.

Constrained multi-degree reduction of triangular BÃ©zier surfaces using dual Bernstein polynomials. Journal of Computational and Applied Mathematics, 2010, 235, 785-804.

Method of summation of some slowly convergent series. Applied Mathematics and Computation, 2009, 215, 1622-1645.

Multi-degree reduction of $B A \tilde{C}$ ©zier curves with constraints, using dual Bernstein basis polynomials.
Computer Aided Geometric Design, 2009, 26, 566-579.

Multivariate generalized Bernstein polynomials: identities for orthogonal polynomials of two
variables. Numerical Algorithms, 2008, 49, 199-220.

Connections between two-variable Bernstein and Jacobi polynomials on the triangle. Journal of Computational and Applied Mathematics, 2006, 197, 520-533.

27 Dual generalized Bernstein basis. Journal of Approximation Theory, 2006, 138, 129-150.
0.5

23

28 Generalized Bernstein Polynomials. BIT Numerical Mathematics, 2004, 44, 63-78.
1.0

42

```
29 Recurrence Relations for the Coefficients in Series Expansions with Respect to Semi-Classical
Orthogonal Polynomials. Numerical Algorithms, 2004, 35, 61-79.
```

Formulae relating littleq-Jacobi,q-Hahn andq-Bernstein polynomials: application toq-BÃ@zier curve evaluation. Integral Transforms and Special Functions, 2004, 15, 375-385.

Recurrence relations for the coefficients of expansions in classical orthogonal polynomials of a discrete variable. Applicationes Mathematicae, 2003, 30, 89-107.

