Geoff Inman-Bamber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2345253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sugarcane. , 2021, , 674-713.		5
2	Sugarcane yield future scenarios in Brazil as projected by the APSIM-Sugar model. Industrial Crops and Products, 2021, 171, 113918.	5.2	9
3	High-yielding sugarcane in tropical Brazil – Integrating field experimentation and modelling approach for assessing variety performances. Field Crops Research, 2021, 274, 108323.	5.1	3
4	Sugarcane evapotranspiration and irrigation requirements in tropical climates. Theoretical and Applied Climatology, 2020, 140, 1349-1357.	2.8	15
5	Traits for canopy development and light interception by twenty-seven Brazilian sugarcane varieties. Field Crops Research, 2020, 249, 107716.	5.1	17
6	Sugarcane: Contribution of Process-Based Models for Understanding and Mitigating Impacts of Climate Variability and Change on Production. , 2020, , 217-260.		2
7	New APSIM-Sugar features and parameters required to account for high sugarcane yields in tropical environments. Field Crops Research, 2019, 235, 38-53.	5.1	29
8	Accurate prediction of sugarcane yield using a random forest algorithm. Agronomy for Sustainable Development, 2016, 36, 1.	5.3	186
9	Genetic variation in transpiration efficiency and relationships between whole plant and leaf gas exchange measurements in <i>Saccharum</i> spp. and related germplasm. Journal of Experimental Botany, 2016, 67, 861-871.	4.8	44
10	Sugarcane for water-limited environments. Variation in stomatal conductance and its genetic correlation with crop productivity. Journal of Experimental Botany, 2015, 66, 3945-3958.	4.8	51
11	A Dual Ensemble Agroclimate Modelling Procedure to Assess Climate Change Impacts on Sugarcane Production in Australia. Agricultural Sciences, 2015, 06, 870-888.	0.3	10
12	Nitrogen leaching from the root zone of sugarcane and bananas in the humid tropics of Australia. Agriculture, Ecosystems and Environment, 2013, 180, 68-78.	5.3	35
13	Sugarcane for water-limited environments. Genetic variation in cane yield and sugar content in response to water stress. Journal of Experimental Botany, 2012, 63, 6023-6033.	4.8	86
14	Sugarcane for water-limited environments: Theoretical assessment of suitable traits. Field Crops Research, 2012, 134, 95-104.	5.1	81
15	Sucrose accumulation in sugarcane stalks does not limit photosynthesis and biomass production. Crop and Pasture Science, 2011, 62, 848.	1.5	30
16	Modelling genetic and environmental control of biomass partitioning at plant and phytomer level of sugarcane grown in controlled environments. Crop and Pasture Science, 2011, 62, 66.	1.5	11
17	Sucrose accumulation in sugarcane is influenced by temperature and genotype through the carbon source - sink balance. Crop and Pasture Science, 2010, 61, 111.	1.5	33
18	Source - sink differences in genotypes and water regimes influencing sucrose accumulation in sugarcane stalks. Crop and Pasture Science, 2009, 60, 316.	1.5	35

Geoff Inman-Bamber

#	Article	IF	CITATIONS
19	Increasing sucrose accumulation in sugarcane by manipulating leaf extension and photosynthesis with irrigation. Australian Journal of Agricultural Research, 2008, 59, 13.	1.5	79
20	A Bayesian modelling approach for long lead sugarcane yield forecasts for the Australian sugar industry. Australian Journal of Agricultural Research, 2007, 58, 87.	1.5	16
21	The historical and future contribution of crop physiology and modelling research to sugarcane production systems. Field Crops Research, 2005, 92, 321-335.	5.1	49
22	Growth and function of the sugarcane root system. Field Crops Research, 2005, 92, 169-183.	5.1	214
23	Water relations in sugarcane and response to water deficits. Field Crops Research, 2005, 92, 185-202.	5.1	328
24	Decline in the growth of a sugarcane crop with age under high input conditions. Field Crops Research, 2005, 92, 305-320.	5.1	63
25	Sugarcane water stress criteria for irrigation and drying off. Field Crops Research, 2004, 89, 107-122.	5.1	162
26	Value of irrigation water with uncertain future rain: A simulation case study of sugarcane irrigation in northern Australia. Water Resources Research, 2003, 39, .	4.2	3
27	Crop coefficients and water-use estimates for sugarcane based on long-term Bowen ratio energy balance measurements. Field Crops Research, 2003, 83, 125-138.	5.1	117
28	Enhanced risk management and decision-making capability across the sugarcane industry value chain based on seasonal climate forecasts. Agricultural Systems, 2002, 74, 459-477.	6.1	90
29	Dry matter partitioning of sugarcane in Australia and South Africa. Field Crops Research, 2002, 76, 71-84.	5.1	52
30	Physiology and productivity of sugarcane with early and mid-season water deficit. Field Crops Research, 1999, 64, 211-227.	5.1	106
31	Estimating the risk associated with drying-off strategies for irrigated sugarcane before harvest. Australian Journal of Agricultural Research, 1999, 50, 65.	1.5	37
32	Temperature and seasonal effects on canopy development and light interception of sugarcane. Field Crops Research, 1994, 36, 41-51.	5.1	119
33	A growth model for sugar-cane based on a simple carbon balance and the CERES-Maize water balance. South African Journal of Plant and Soil, 1991, 8, 93-99.	1.1	96
34	Effect of water stress on cane growth and water use of sugar cane. South African Journal of Plant and Soil, 1988, 5, 65-70.	1.1	3
35	The reaction of two varieties of sugarcane to water stress. Field Crops Research, 1986, 14, 15-28.	5.1	29