Dapeng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2345242/publications.pdf Version: 2024-02-01

DADENC WANC

#	Article	IF	CITATIONS
1	Collaborative Strategy of Multifunctional Groups in Trifluoroacetamide Achieving Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	17
2	Synergistic Effect of RbBr Interface Modification on Highly Efficient and Stable Perovskite Solar Cells. ACS Omega, 2021, 6, 13766-13773.	3.5	3
3	Room-temperature sputtered-SnO2 modified anode toward efficient TiO2-based planar perovskite solar cells. Science China Technological Sciences, 2021, 64, 1995-2002.	4.0	6
4	Defect gradient control in amorphous InGaZnO for high-performance thin-film transistors. Journal Physics D: Applied Physics, 2020, 53, 135104.	2.8	2
5	NaCl-assisted defect passivation in the bulk and surface of TiO2 enhancing efficiency and stability of planar perovskite solar cells. Journal of Power Sources, 2020, 448, 227586.	7.8	26
6	Impact of Photo-Excitation on Leakage Current and Negative Bias Instability in InSnZnO Thickness-Varied Thin-Film Transistors. Nanomaterials, 2020, 10, 1782.	4.1	5
7	Solvent Engineering Using a Volatile Solid for Highly Efficient and Stable Perovskite Solar Cells. Advanced Science, 2020, 7, 1903250.	11.2	47
8	Understanding the Role of Temperature and Drain Current Stress in InSnZnO TFTs with Various Active Layer Thicknesses. Nanomaterials, 2020, 10, 617.	4.1	7
9	Additive Engineering to Grow Micron‧ized Grains for Stable High Efficiency Perovskite Solar Cells. Advanced Science, 2019, 6, 1901241.	11.2	93
10	Formation mechanisms of interfaces between different Ti _n O _{2nâ^'1} phases prepared by carbothermal reduction reaction. CrystEngComm, 2019, 21, 524-534.	2.6	28
11	Quantitative analysis of annealing-induced instabilities of photo-leakage current and negative-bias-illumination-stress in a-InGaZnO thin-film transistors. Beilstein Journal of Nanotechnology, 2019, 10, 1125-1130.	2.8	3
12	Comprehensive investigation of sputtered and spin-coated zinc oxide electron transport layers for highly efficient and stable planar perovskite solar cells. Journal of Power Sources, 2019, 427, 223-230.	7.8	24
13	Collaborative optimization of thermal budget annealing and active layer defect content enhancing electrical characteristics and bias stress stability in InGaZnO thin-film transistors. Journal Physics D: Applied Physics, 2019, 52, 235101.	2.8	1
14	Oxidation, reduction, and inert gases plasma-modified defects in TiO2 as electron transport layer for planar perovskite solar cells. Journal of CO2 Utilization, 2019, 32, 46-52.	6.8	8
15	Controlled defects and enhanced electronic extraction in fluorine-incorporated zinc oxide for high-performance planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 182, 263-271.	6.2	41
16	Chelate-Pb Intermediate Engineering for High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 14744-14750.	8.0	15
17	Bifunctional Hydroxylamine Hydrochloride Incorporated Perovskite Films for Efficient and Stable Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 900-909.	5.1	81
18	Stoichiometry control of sputtered zinc oxide films by adjusting Ar/O2 gas ratios as electron transport layers for efficient planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 178, 200-207.	6.2	26

DAPENG WANG

#	Article	IF	CITATIONS
19	On the growth morphology and crystallography of the epitaxial Cu ₇ Te ₄ /CdTe interface. CrystEngComm, 2018, 20, 1050-1056.	2.6	4
20	Exploring the photoleakage current and photoinduced negative bias instability in amorphous InGaZnO thin-film transistors with various active layer thicknesses. Beilstein Journal of Nanotechnology, 2018, 9, 2573-2580.	2.8	7
21	Drain Current Stress-Induced Instability in Amorphous InGaZnO Thin-Film Transistors with Different Active Layer Thicknesses. Materials, 2018, 11, 559.	2.9	14
22	CO ₂ Plasma-Treated TiO ₂ Film as an Effective Electron Transport Layer for High-Performance Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 33989-33996.	8.0	35
23	Investigation of Carrier Generation Mechanism in Fluorine-Doped n ⁺ -In–Ga–Zn-O for Self-Aligned Thin-Film Transistors. Journal of Display Technology, 2016, 12, 258-262.	1.2	24
24	Investigating Effect of Postannealing Time on Positive Bias Stress Stability of In–Ga–Zn–O TFT by Conductance Method. IEEE Transactions on Electron Devices, 2015, 62, 3697-3702.	3.0	6
25	Capacitance Sensor of Frequency Modulation for Integrated Touchpanels Using Amorphous In-Sn-Zn-O Thin-Film Transistors. IEICE Transactions on Electronics, 2015, E98.C, 1028-1031.	0.6	0
26	Quantitative Analysis of the Effect of Hydrogen Diffusion from Silicon Oxide Etch-Stopper Layer into Amorphous In–Ga–Zn–O on Thin-Film Transistor. IEEE Transactions on Electron Devices, 2014, 61, 3762-3767.	3.0	80
27	High-Performance Solution-Processed InGaZnO Thin-Film Transistor Fabricated by Ozone-Assisted Atmospheric Pressure Mist Deposition. Journal of Display Technology, 2014, 10, 934-938.	1.2	17
28	Effect of drain bias on negative gate bias and illumination stress induced degradation in amorphous InGaZnO thin-film transistors. Japanese Journal of Applied Physics, 2014, 53, 03CC01.	1.5	9
29	Thermally stable n ⁺ -InGaZnO layer stacked by fluorinated silicon nitride for self-aligned thin-film transistor application. , 2014, , .		0
30	Suppression of Degradation Induced by Negative Gate Bias and Illumination Stress in Amorphous InGaZnO Thin-Film Transistors by Applying Negative Drain Bias. ACS Applied Materials & Interfaces, 2014, 6, 5713-5718.	8.0	23
31	Thermal analysis of amorphous oxide thin-film transistor degraded by combination of joule heating and hot carrier effect. Applied Physics Letters, 2013, 102, .	3.3	72
32	P.8: Trap States in Amorphous Inâ€5nâ€Znâ€O Thinâ€Film Transistors Analyzed Using Dependence on Channel Thickness. Digest of Technical Papers SID International Symposium, 2013, 44, 1014-1017.	0.3	1
33	Thermal distribution in amorphous InSnZnO thinâ€film transistor. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1561-1564.	0.8	9
34	Photo Induced Negative Bias Instability of Zinc Oxide Thin-Film Transistors. Japanese Journal of Applied Physics, 2012, 51, 108003.	1.5	3
35	Well-arrayed ZnO nanostructures formed by multi-annealing processes at low temperature. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 194-197.	0.8	11
36	Photo-Leakage Current of Thin-Film Transistors with ZnO Channels Formed at Various Oxygen Partial Pressures under Visible Light Irradiation. Japanese Journal of Applied Physics, 2012, 51, 03CB04.	1.5	7

#	Article	IF	CITATIONS
37	Photo Induced Negative Bias Instability of Zinc Oxide Thin-Film Transistors. Japanese Journal of Applied Physics, 2012, 51, 108003.	1.5	1
38	Influence of sputtering pressure on band gap of Zn1â^' <i>x</i> Mg <i>x</i> O thin films prepared by radio frequency magnetron sputtering. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	1.2	9