
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2345190/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Challenges and Strategies of Low ost Aluminum Anodes for Highâ€Performance Alâ€Based Batteries. Advanced Materials, 2022, 34, e2102026.	21.0	56
2	Rationalization on high-loading iron and cobalt dual metal single atoms and mechanistic insight into the oxygen reduction reaction. Nano Energy, 2022, 93, 106793.	16.0	109
3	A Lowâ€Cost and Airâ€Stable Rechargeable Aluminumâ€lon Battery. Advanced Materials, 2022, 34, e2106511.	21.0	32
4	Spray-formed commercial aluminum alloy anodes with suppressed self-corrosion for Al-Air batteries. Journal of Power Sources, 2022, 524, 231082.	7.8	12
5	Recent advances in developing organic positive electrode materials for rechargeable aluminum-ion batteries. Energy Storage Materials, 2022, 51, 63-79.	18.0	29
6	In-situ construction of Co/CoSe Schottky heterojunction with interfacial electron redistribution to facilitate oxygen electrocatalysis bifunctionality for zinc-air batteries. Chemical Engineering Journal, 2022, 450, 137991.	12.7	27
7	Interface engineering of Co3Fe7-Fe3C heterostructure as an efficient oxygen reduction reaction electrocatalyst for aluminum-air batteries. Chemical Engineering Journal, 2021, 404, 127124.	12.7	46
8	Evaluation of Impurities in Aluminum Anodes for Al-Air Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 2300-2308.	6.7	23
9	The 2021 battery technology roadmap. Journal Physics D: Applied Physics, 2021, 54, 183001.	2.8	158
10	Plasma-Assisted Synthesis of Defect-Rich O and N Codoped Carbon Nanofibers Loaded with Manganese Oxides as an Efficient Oxygen Reduction Electrocatalyst for Aluminum–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 37123-37132.	8.0	17
11	Structure and Interface Modification of Carbon Dots for Electrochemical Energy Application. Small, 2021, 17, e2102091.	10.0	36
12	Heterostructural Interface in Fe ₃ C-TiN Quantum Dots Boosts Oxygen Reduction Reaction for Al–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 47440-47448.	8.0	13
13	Dimensional engineering of carbon dots derived sulfur and nitrogen co-doped carbon as efficient oxygen reduction reaction electrocatalysts for aluminum-air batteries. Chemical Engineering Journal, 2021, 425, 130603.	12.7	36
14	Hierarchical Porous Manganese- and Nitrogen-Codoped Carbon Nanosheets Derived from Surface Modified Biomass as Efficient Oxygen Reduction Catalysts for Al-Air Batteries. Journal of the Electrochemical Society, 2020, 167, 110552.	2.9	15
15	Integrated and Binderâ€Free Air Cathodes of Co ₃ Fe ₇ Nanoalloy and Co _{5.47} N Encapsulated in Nitrogenâ€Doped Carbon Foam with Superior Oxygen Reduction Activity in Flexible Aluminumâ€Air Batteries. Advanced Science, 2020, 7, 2000747.	11.2	67
16	High performance aluminum foam-graphite dual-ion batteries and failure analysis. Journal of Alloys and Compounds, 2020, 838, 155640.	5.5	12
17	Ni-based aligned plate intermetallic nanostructures as effective catalysts for hydrogen evolution reaction. Materials Letters, 2020, 272, 127831.	2.6	7
18	The correlation between chemical effect and segregation behavior in metallic Al liquid. Computational Materials Science, 2020, 175, 109611.	3.0	1

CHAOPENG FU

#	Article	IF	CITATIONS
19	Electrochemical Performance of Aluminum Anodes with Different Grain Sizes for Al-Air Batteries. Journal of the Electrochemical Society, 2020, 167, 040514.	2.9	17
20	Engineering defectâ€enabled 3D porous MoS ₂ /C architectures for high performance lithiumâ€ion batteries. Journal of the American Ceramic Society, 2020, 103, 4453-4462.	3.8	20
21	Space-confined synthesis of CoNi nanoalloy in N-doped porous carbon frameworks as efficient oxygen reduction catalyst for neutral and alkaline aluminum-air batteries. Energy Storage Materials, 2020, 27, 96-108.	18.0	63
22	Constructing light-weight polar boron-doped carbon nitride nanosheets with increased active sites and conductivity for high performance lithium-sulfur batteries. International Journal of Hydrogen Energy, 2020, 45, 14940-14952.	7.1	25
23	Highly Conductive and Reusable Electrolyte Based on Sodium Polyacrylate Composite for Flexible Al-Air Batteries. Journal of the Electrochemical Society, 2020, 167, 080502.	2.9	12
24	Ultra-fast transfer and high storage of Li+/Na+ in MnO quantum dots@carbon hetero-nanotubes: Appropriate quantum dots to improve the rate. Energy Storage Materials, 2019, 17, 157-166.	18.0	70
25	Ultra-thin Fe3C nanosheets promote the adsorption and conversion of polysulfides in lithium-sulfur batteries. Energy Storage Materials, 2019, 18, 338-348.	18.0	137
26	Electrochemical performance of pure Al, Al–Sn, Al–Mg and Al–Mg–Sn anodes for Al-air batteries. Journal of Alloys and Compounds, 2019, 808, 151708.	5.5	84
27	Innovative methods to couple earth-abundant biomass waste with air batteries. Current Opinion in Electrochemistry, 2019, 15, 133-139.	4.8	11
28	Partial self-sacrificing templates synthesis of sandwich-like mesoporous C N@Fe3O4@C N hollow spheres for high-performance Li-ion batteries. International Journal of Hydrogen Energy, 2019, 44, 1816-1826.	7.1	16
29	Defect-engineered MnO2 enhancing oxygen reduction reaction for high performance Al-air batteries. Energy Storage Materials, 2019, 18, 34-42.	18.0	105
30	Room temperature solid state dual-ion batteries based on gel electrolytes. Journal of Materials Chemistry A, 2018, 6, 4313-4323.	10.3	40
31	<i>In Situ</i> Self-Template Synthesis of Fe–N-Doped Double-Shelled Hollow Carbon Microspheres for Oxygen Reduction Reaction. ACS Nano, 2018, 12, 208-216.	14.6	231
32	A novel dual-graphite aluminum-ion battery. Energy Storage Materials, 2018, 12, 119-127.	18.0	86
33	A Rechargeable Al–Te Battery. ACS Applied Energy Materials, 2018, 1, 4924-4930.	5.1	51
34	Polar Ultrathin Selfâ€Doping Carbon Nitride Nanosheets with Intrinsic Polysulfide Adsorption for High Performance Lithiumâ€Sulfur Batteries. Batteries and Supercaps, 2018, 1, 192-201.	4.7	22
35	A high-performance dual-ion cell utilizing Si nanosphere@graphene anode. Electrochimica Acta, 2018, 282, 946-954.	5.2	13
36	Novel cathode materials LixNa2â^'xV2O6 (xÂ=Â2, 1.4, 1, 0) for high-performance lithium-ion batteries. Journal of Power Sources, 2017, 344, 25-31.	7.8	15

#	Article	IF	CITATIONS
37	Facile preparation of nitrogen/sulfur co-doped and hierarchical porous graphene hydrogel for high-performance electrochemical capacitor. Journal of Power Sources, 2017, 345, 146-155.	7.8	109
38	Hydrothermal synthesis of boron-doped unzipped carbon nanotubes/sulfur composite for high-performance lithium-sulfur batteries. Electrochimica Acta, 2017, 232, 156-163.	5.2	28
39	In situ growth of single-stranded like poly (o-phenylenediamine) onto graphene for high performance supercapacitors. Electrochimica Acta, 2017, 245, 41-50.	5.2	50
40	Hydrothermal preparation of nitrogen, boron co-doped curved graphene nanoribbons with high dopant amounts for high-performance lithium sulfur battery cathodes. Journal of Materials Chemistry A, 2017, 5, 7403-7415.	10.3	93
41	K-doped Li 3 V 2 (PO 4) 3 : A novel cathode material for high performance lithium-ion batteries. Materials Letters, 2017, 198, 73-75.	2.6	17
42	Hierarchical porous carbon spheres/graphene composite for supercapacitor with both aqueous solution and ionic liquid. Electrochimica Acta, 2017, 235, 340-347.	5.2	55
43	Co ₉ S ₈ nanoparticles embedded in a N, S co-doped graphene-unzipped carbon nanotube composite as a high performance electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 1014-1021.	10.3	99
44	Threeâ€Dimensional Hierarchical Porous Nitrogen and Sulfurâ€Codoped Graphene Nanosheets for Oxygen Reduction in Both Alkaline and Acidic Media. ChemCatChem, 2017, 9, 987-996.	3.7	41
45	A novel method to prepare a nanotubes@mesoporous carbon composite material based on waste biomass and its electrochemical performance. Journal of Materials Chemistry A, 2017, 5, 3875-3887.	10.3	74
46	Three-dimensional Porous C3N4 Nanosheets@Reduced Graphene Oxide Network as Sulfur Hosts for High Performance Lithium-Sulfur Batteries. Electrochimica Acta, 2017, 256, 1-9.	5.2	56
47	One step in-situ synthesis of Co@N, S co-doped CNTs composite with excellent HER and ORR bi-functional electrocatalytic performances. Electrochimica Acta, 2017, 247, 736-744.	5.2	39
48	Different types of nitrogen species in nitrogen-doped carbon material: The formation mechanism and catalytic role on oxygen reduction reaction. Electrochimica Acta, 2017, 245, 957-966.	5.2	40
49	Porous nitrogen-doped graphene for high energy density supercapacitors in an ionic liquid electrolyte. Journal of Solid State Electrochemistry, 2017, 21, 759-766.	2.5	15
50	A novel design of engineered multi-walled carbon nanotubes material and its improved performance in simultaneous detection of Cd(II) and Pb(II) by square wave anodic stripping voltammetry. Sensors and Actuators B: Chemical, 2016, 236, 144-152.	7.8	78
51	Synthesis of curly graphene nanoribbon/polyaniline/MnO ₂ composite and its application in supercapacitor. RSC Advances, 2016, 6, 41142-41150.	3.6	33
52	Three-Dimensional Porous Nitrogen doped Graphene Hydrogel for High Energy Density supercapacitors. Electrochimica Acta, 2016, 213, 291-297.	5.2	84
53	Chemical modification of pristine carbon nanotubes and their exploitation as the carbon hosts for lithium-sulfur batteries. International Journal of Hydrogen Energy, 2016, 41, 21850-21860.	7.1	35
54	Electrochemical and anti-corrosion properties of octadecanethiol and benzotriazole binary self-assembled monolayers on copper. Electrochimica Acta, 2016, 220, 245-251.	5.2	34

#	Article	IF	CITATIONS
55	Three-Dimensional Pompon-like MnO2/Graphene Hydrogel Composite for Supercapacitor. Electrochimica Acta, 2016, 210, 804-811.	5.2	62
56	Production of hollow and porous Fe ₂ O ₃ from industrial mill scale and its potential for large-scale electrochemical energy storage applications. Journal of Materials Chemistry A, 2016, 4, 2597-2604.	10.3	68
57	Preparation, Characterization, and Lithium Intercalation Behavior of LiVO ₃ Cathode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2016, 120, 3242-3249.	3.1	21
58	Preparation and characterization of porous sponge-like Pd@Pt nanotubes with high catalytic activity for ethanol oxidation. Materials Letters, 2016, 173, 43-46.	2.6	8
59	Fe ₃ O ₄ /carbon nanofibres with necklace architecture for enhanced electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 14245-14253.	10.3	87
60	Toward Low-Cost Grid Scale Energy Storage: Supercapacitors Based on Up-Cycled Industrial Mill Scale Waste. ACS Sustainable Chemistry and Engineering, 2015, 3, 2831-2838.	6.7	22
61	Preparation of self-ordered nanoporous anodic aluminum oxide membranes by combination of hard anodization. Thin Solid Films, 2014, 552, 75-81.	1.8	28
62	One-step facile electrochemical preparation of WO3/graphene nanocomposites with improved electrochromic properties. Electrochimica Acta, 2014, 117, 139-144.	5.2	59
63	Insights on the Fundamental Capacitive Behavior: A Case Study of MnO ₂ . Small, 2014, 10, 3568-3578.	10.0	45
64	Preparation of Pd/MnO2-reduced graphene oxide nanocomposite for methanol electro-oxidation in alkaline media. Electrochemistry Communications, 2013, 26, 63-66.	4.7	78
65	Improved catalytic performance of Pd nanowires for ethanol oxidation by monolayer of Pt. Chemical Physics Letters, 2013, 585, 128-132.	2.6	9
66	Effects of a pre-existed anodic alumina on successive anodization behavior of aluminum and structure of its oxide film. Materials Chemistry and Physics, 2013, 139, 339-344.	4.0	3
67	Fabrication of AAO films with controllable nanopore size by changing electrolytes and electrolytic parameters. Journal of Solid State Electrochemistry, 2013, 17, 1931-1938.	2.5	19
68	Facile Selfâ€Assembly Synthesis of PdPt Bimetallic Nanotubes with Good Performance for Ethanol Oxidation in an Alkaline Medium. Chemistry - A European Journal, 2013, 19, 13720-13725.	3.3	34
69	Volatilisation of substituted ferrocene compounds of different sizes from room temperature ionic liquids: a kinetic and mechanistic study. New Journal of Chemistry, 2012, 36, 774.	2.8	7
70	Preparation of well-dispersed PdAu bimetallic nanoparticles on reduced graphene oxide sheets with excellent electrochemical activity for ethanoloxidation in alkaline media. Journal of Materials Chemistry, 2012, 22, 1781-1785.	6.7	62
71	Supercapacitors based on high-quality graphene scrolls. Nanoscale, 2012, 4, 3997.	5.6	87
72	Supercapacitor based on electropolymerized polythiophene and multi-walled carbon nanotubes composites. Materials Chemistry and Physics, 2012, 132, 596-600.	4.0	116

#	Article	IF	CITATIONS
73	Electrochemistry of Zirconium Tetrachloride in the Ionic Liquid <i>N</i> â€Butylâ€ <i>N</i> â€methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide: Formation of Zr(III) and Exploitation of ZrCl ₄ as a Facile Ionic Liquid Drying Agent. Electroanalysis, 2012, 24, 210-213.	2.9	3
74	Volatilisation of ferrocene from ionic liquids: kinetics and mechanism. Chemical Communications, 2011, 47, 7083.	4.1	21
75	Study on Ag–Pd bimetallic nanoparticles for electrocatalytic reduction of benzyl chloride. Electrochemistry Communications, 2011, 13, 1413-1416.	4.7	25
76	Supercapacitor based on graphene and ionic liquid electrolyte. Journal of Solid State Electrochemistry, 2011, 15, 2581-2585.	2.5	71
77	Facile Preparation of Highâ€Quality Graphene Scrolls from Graphite Oxide by a Microexplosion Method. Advanced Materials, 2011, 23, 4929-4932.	21.0	97
78	The Kinetics of Ferrocene Volatilisation from an Ionic Liquid. ChemPhysChem, 2011, 12, 1708-1713.	2.1	16
79	Electrochemical co-reduction synthesis of graphene/Au nanocomposites in ionic liquid and their electrochemical activity. Chemical Physics Letters, 2010, 499, 250-253.	2.6	78
80	Electrodeposition of gold nanoparticles from ionic liquid microemulsion. Colloid and Polymer Science, 2010, 288, 1097-1103.	2.1	28
81	Research on electrochemical properties of nonaqueous ionic liquid microemulsions. Colloid and Polymer Science, 2008, 286, 1499-1504.	2.1	14
82	Comparison of electrodeposition of silver in ionic liquid microemulsions. Electrochemistry Communications, 2008, 10, 806-809.	4.7	38
83	Electrosynthesis of polyaniline films on titanium by pulse potentiostatic method. Synthetic Metals,	3.9	32