Warner C Greene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2345144/publications.pdf

Version: 2024-02-01

		109321	189892
55	7,762 citations	35	50
papers	citations	h-index	g-index
60	60	60	9432
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Deep Phenotypic Analysis of Blood and Lymphoid T and NK Cells From HIV+ Controllers and ART-Suppressed Individuals. Frontiers in Immunology, 2022, 13, 803417.	4.8	12
2	Neutralizing antibody activity against SARS-CoV-2 variants in gestational age–matched mother-infant dyads after infection or vaccination. JCI Insight, 2022, 7, .	5.0	13
3	Limited cross-variant immunity from SARS-CoV-2 Omicron without vaccination. Nature, 2022, 607, 351-355.	27.8	143
4	Evaluating a New Class of AKT/mTOR Activators for HIV Latency-Reversing Activity <i>Ex Vivo</i> and <i>In Vivo</i> Journal of Virology, 2021, 95, .	3.4	13
5	Characterization of HIV-induced remodeling reveals differences in infection susceptibility of memory CD4+ TÂcell subsets inÂvivo. Cell Reports, 2021, 35, 109038.	6.4	15
6	Hyaluronic acid is a negative regulator of mucosal fibroblast-mediated enhancement of HIV infection. Mucosal Immunology, 2021, 14, 1203-1213.	6.0	8
7	Distinctive features of SARS-CoV-2-specific T cells predict recovery from severe COVID-19. Cell Reports, 2021, 36, 109414.	6.4	75
8	Bystander CD4 T-cell death is inhibited by broadly neutralizing anti-HIV antibodies only at levels blocking cell-to-cell viral transmission. Journal of Biological Chemistry, 2021, 297, 101098.	3.4	3
9	mRNA vaccine-induced T cells respond identically to SARS-CoV-2 variants of concern but differ in longevity and homing properties depending on prior infection status. ELife, 2021, 10, .	6.0	63
10	Reduce and Control: A Combinatorial Strategy for Achieving Sustained HIV Remissions in the Absence of Antiretroviral Therapy. Viruses, 2020, 12, 188.	3.3	10
11	Tissue memory CD4+ T cells expressing IL-7 receptor-alpha (CD127) preferentially support latent HIV-1 infection. PLoS Pathogens, 2020, 16, e1008450.	4.7	34
12	SARS-CoV-2-Specific T Cells Exhibit Phenotypic Features of Helper Function, Lack of Terminal Differentiation, and High Proliferation Potential. Cell Reports Medicine, 2020, 1, 100081.	6.5	166
13	Identification of unrecognized host factors promoting HIV-1 latency. PLoS Pathogens, 2020, 16, e1009055.	4.7	16
14	HIV efficiently infects T cells from the endometrium and remodels them to promote systemic viral spread. ELife, 2020, 9, .	6.0	36
15	Phenotypic analysis of the unstimulated in vivo HIV CD4 T cell reservoir. ELife, 2020, 9, .	6.0	63
16	Title is missing!. , 2020, 16, e1008450.		0
17	Title is missing!. , 2020, 16, e1008450.		О
18	Title is missing!. , 2020, 16, e1008450.		0

#	Article	IF	Citations
19	Title is missing!. , 2020, 16, e1008450.		O
20	Title is missing!. , 2020, 16, e1008450.		0
21	Title is missing!. , 2020, 16, e1008450.		0
22	Attacking Latent HIV with convertible CAR-T Cells, a Highly Adaptable Killing Platform. Cell, 2019, 179, 880-894.e10.	28.9	95
23	HIV-2 Depletes CD4 T Cells through Pyroptosis despite Vpx-Dependent Degradation of SAMHD1. Journal of Virology, 2019, 93, .	3.4	6
24	Distinct mechanisms regulate IL1B gene transcription in lymphoid CD4 T cells and monocytes. Cytokine, 2018, 111, 373-381.	3.2	25
25	Distinct chromatin functional states correlate with HIV latency reactivation in infected primary CD4+ T cells. ELife, 2018, 7, .	6.0	126
26	SMYD2-Mediated Histone Methylation Contributes to HIV-1 Latency. Cell Host and Microbe, 2017, 21, 569-579.e6.	11.0	78
27	Mass Cytometric Analysis of HIV Entry, Replication, and Remodeling in Tissue CD4+ T Cells. Cell Reports, 2017, 20, 984-998.	6.4	66
28	Mucosal stromal fibroblasts markedly enhance HIV infection of CD4+ T cells. PLoS Pathogens, 2017, 13, e1006163.	4.7	51
29	The mTOR Complex Controls HIV Latency. Cell Host and Microbe, 2016, 20, 785-797.	11.0	179
30	Stimulating the RIG-I pathway to kill cells in the latent HIV reservoir following viral reactivation. Nature Medicine, 2016, 22, 807-811.	30.7	84
31	Dissecting How CD4ÂT Cells Are Lost During HIV Infection. Cell Host and Microbe, 2016, 19, 280-291.	11.0	182
32	MicroRNA-155 Reinforces HIV Latency. Journal of Biological Chemistry, 2015, 290, 13736-13748.	3.4	72
33	Blood-Derived CD4ÂT Cells Naturally Resist Pyroptosis during Abortive HIV-1 Infection. Cell Host and Microbe, 2015, 18, 463-470.	11.0	94
34	Cell-to-Cell Transmission of HIV-1 Is Required to Trigger Pyroptotic Death of Lymphoid-Tissue-Derived CD4ÂT Cells. Cell Reports, 2015, 12, 1555-1563.	6.4	135
35	Semen enhances HIV infectivity and impairs the antiviral efficacy of microbicides. Science Translational Medicine, 2014, 6, 262ra157.	12.4	69
36	Direct visualization of HIV-enhancing endogenous amyloid fibrils in human semen. Nature Communications, 2014, 5, 3508.	12.8	95

#	Article	IF	Citations
37	Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature, 2014, 505, 509-514.	27.8	931
38	IFI16 DNA Sensor Is Required for Death of Lymphoid CD4 T Cells Abortively Infected with HIV. Science, 2014, 343, 428-432.	12.6	437
39	HIV-enhancing Amyloids Are Prevalent in Fresh Semen and Are a Determinant for Semen's Ability to Enhance HIV Infection: Relevance for HIV Transmission. AIDS Research and Human Retroviruses, 2014, 30, A183-A184.	1.1	4
40	Interaction of Fibronectin With Semen Amyloids Synergistically Enhances HIV Infection. Journal of Infectious Diseases, 2014, 210, 1062-1066.	4.0	8
41	Liquefaction of Semen Generates and Later Degrades a Conserved Semenogelin Peptide That Enhances HIV Infection. Journal of Virology, 2014, 88, 7221-7234.	3.4	53
42	An Integrated Overview of HIV-1 Latency. Cell, 2013, 155, 519-529.	28.9	264
43	An In-Depth Comparison of Latent HIV-1 Reactivation in Multiple Cell Model Systems and Resting CD4+ T Cells from Aviremic Patients. PLoS Pathogens, 2013, 9, e1003834.	4.7	360
44	A Flexible Model of HIV-1 Latency Permitting Evaluation of Many Primary CD4 T-Cell Reservoirs. PLoS ONE, 2012, 7, e30176.	2.5	116
45	HIV Latency. Cold Spring Harbor Perspectives in Medicine, 2011, 1, a007096-a007096.	6.2	447
46	Abortive HIV Infection Mediates CD4 T Cell Depletion and Inflammation in Human Lymphoid Tissue. Cell, 2010, 143, 789-801.	28.9	384
47	A history of AIDS: Looking back to see ahead. European Journal of Immunology, 2007, 37, S94-S102.	2.9	109
48	NF- $\hat{\mathbb{I}}^{\mathbb{Q}}$ B p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO Journal, 2006, 25, 139-149.	7.8	411
49	The brightening future of HIV therapeutics. Nature Immunology, 2004, 5, 867-871.	14.5	33
50	Regulation of NF-kappaB action by reversible acetylation. Novartis Foundation Symposium, 2004, 259, 208-17; discussion 218-25.	1.1	47
51	Charting HIV's remarkable voyage through the cell: Basic science as a passport to future therapy. Nature Medicine, 2002, 8, 673-680.	30.7	236
52	Duration of Nuclear NF-κB Action Regulated by Reversible Acetylation. Science, 2001, 293, 1653-1657.	12.6	1,153
53	Dynamic Disruptions in Nuclear Envelope Architecture and Integrity Induced by HIV-1 Vpr. Science, 2001, 294, 1105-1108.	12.6	263
54	Protein Kinase C-Î, Participates in NF-κB Activation Induced by CD3-CD28 Costimulation through Selective Activation of lκB Kinase β. Molecular and Cellular Biology, 2000, 20, 2933-2940.	2.3	250

#	Article	IF	CITATIONS
55	The generation of nfkb2 p52: mechanism and efficiency. Oncogene, 1999, 18, 6201-6208.	5.9	112