Warner C Greene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2345144/publications.pdf Version: 2024-02-01

WADNED C CDEENE

#	Article	IF	CITATIONS
1	Duration of Nuclear NF-κB Action Regulated by Reversible Acetylation. Science, 2001, 293, 1653-1657.	12.6	1,153
2	Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature, 2014, 505, 509-514.	27.8	931
3	HIV Latency. Cold Spring Harbor Perspectives in Medicine, 2011, 1, a007096-a007096.	6.2	447
4	IFI16 DNA Sensor Is Required for Death of Lymphoid CD4 T Cells Abortively Infected with HIV. Science, 2014, 343, 428-432.	12.6	437
5	NF-κB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO Journal, 2006, 25, 139-149.	7.8	411
6	Abortive HIV Infection Mediates CD4 T Cell Depletion and Inflammation in Human Lymphoid Tissue. Cell, 2010, 143, 789-801.	28.9	384
7	An In-Depth Comparison of Latent HIV-1 Reactivation in Multiple Cell Model Systems and Resting CD4+ T Cells from Aviremic Patients. PLoS Pathogens, 2013, 9, e1003834.	4.7	360
8	An Integrated Overview of HIV-1 Latency. Cell, 2013, 155, 519-529.	28.9	264
9	Dynamic Disruptions in Nuclear Envelope Architecture and Integrity Induced by HIV-1 Vpr. Science, 2001, 294, 1105-1108.	12.6	263
10	Protein Kinase C-Î, Participates in NF-κB Activation Induced by CD3-CD28 Costimulation through Selective Activation of IκB Kinase β. Molecular and Cellular Biology, 2000, 20, 2933-2940.	2.3	250
11	Charting HIV's remarkable voyage through the cell: Basic science as a passport to future therapy. Nature Medicine, 2002, 8, 673-680.	30.7	236
12	Dissecting How CD4ÂT Cells Are Lost During HIV Infection. Cell Host and Microbe, 2016, 19, 280-291.	11.0	182
13	The mTOR Complex Controls HIV Latency. Cell Host and Microbe, 2016, 20, 785-797.	11.0	179
14	SARS-CoV-2-Specific T Cells Exhibit Phenotypic Features of Helper Function, Lack of Terminal Differentiation, and High Proliferation Potential. Cell Reports Medicine, 2020, 1, 100081.	6.5	166
15	Limited cross-variant immunity from SARS-CoV-2 Omicron without vaccination. Nature, 2022, 607, 351-355.	27.8	143
16	Cell-to-Cell Transmission of HIV-1 Is Required to Trigger Pyroptotic Death of Lymphoid-Tissue-Derived CD4ÂT Cells. Cell Reports, 2015, 12, 1555-1563.	6.4	135
17	Distinct chromatin functional states correlate with HIV latency reactivation in infected primary CD4+ T cells. ELife, 2018, 7, .	6.0	126
18	A Flexible Model of HIV-1 Latency Permitting Evaluation of Many Primary CD4 T-Cell Reservoirs. PLoS ONE, 2012, 7, e30176.	2.5	116

WARNER C GREENE

#	Article	IF	CITATIONS
19	The generation of nfkb2 p52: mechanism and efficiency. Oncogene, 1999, 18, 6201-6208.	5.9	112
20	A history of AIDS: Looking back to see ahead. European Journal of Immunology, 2007, 37, S94-S102.	2.9	109
21	Direct visualization of HIV-enhancing endogenous amyloid fibrils in human semen. Nature Communications, 2014, 5, 3508.	12.8	95
22	Attacking Latent HIV with convertibleCAR-T Cells, a Highly Adaptable Killing Platform. Cell, 2019, 179, 880-894.e10.	28.9	95
23	Blood-Derived CD4ÂT Cells Naturally Resist Pyroptosis during Abortive HIV-1 Infection. Cell Host and Microbe, 2015, 18, 463-470.	11.0	94
24	Stimulating the RIG-I pathway to kill cells in the latent HIV reservoir following viral reactivation. Nature Medicine, 2016, 22, 807-811.	30.7	84
25	SMYD2-Mediated Histone Methylation Contributes to HIV-1 Latency. Cell Host and Microbe, 2017, 21, 569-579.e6.	11.0	78
26	Distinctive features of SARS-CoV-2-specific T cells predict recovery from severe COVID-19. Cell Reports, 2021, 36, 109414.	6.4	75
27	MicroRNA-155 Reinforces HIV Latency. Journal of Biological Chemistry, 2015, 290, 13736-13748.	3.4	72
28	Semen enhances HIV infectivity and impairs the antiviral efficacy of microbicides. Science Translational Medicine, 2014, 6, 262ra157.	12.4	69
29	Mass Cytometric Analysis of HIV Entry, Replication, and Remodeling in Tissue CD4+ T Cells. Cell Reports, 2017, 20, 984-998.	6.4	66
30	Phenotypic analysis of the unstimulated in vivo HIV CD4 T cell reservoir. ELife, 2020, 9, .	6.0	63
31	mRNA vaccine-induced T cells respond identically to SARS-CoV-2 variants of concern but differ in longevity and homing properties depending on prior infection status. ELife, 2021, 10, .	6.0	63
32	Liquefaction of Semen Generates and Later Degrades a Conserved Semenogelin Peptide That Enhances HIV Infection. Journal of Virology, 2014, 88, 7221-7234.	3.4	53
33	Mucosal stromal fibroblasts markedly enhance HIV infection of CD4+ T cells. PLoS Pathogens, 2017, 13, e1006163.	4.7	51
34	Regulation of NF-kappaB action by reversible acetylation. Novartis Foundation Symposium, 2004, 259, 208-17; discussion 218-25.	1.1	47
35	HIV efficiently infects T cells from the endometrium and remodels them to promote systemic viral spread. ELife, 2020, 9, .	6.0	36
36	Tissue memory CD4+ T cells expressing IL-7 receptor-alpha (CD127) preferentially support latent HIV-1 infection. PLoS Pathogens, 2020, 16, e1008450.	4.7	34

WARNER C GREENE

#	Article	IF	CITATIONS
37	The brightening future of HIV therapeutics. Nature Immunology, 2004, 5, 867-871.	14.5	33
38	Distinct mechanisms regulate IL1B gene transcription in lymphoid CD4 T cells and monocytes. Cytokine, 2018, 111, 373-381.	3.2	25
39	Identification of unrecognized host factors promoting HIV-1 latency. PLoS Pathogens, 2020, 16, e1009055.	4.7	16
40	Characterization of HIV-induced remodeling reveals differences in infection susceptibility of memory CD4+ TÂcell subsets inÂvivo. Cell Reports, 2021, 35, 109038.	6.4	15
41	Evaluating a New Class of AKT/mTOR Activators for HIV Latency-Reversing Activity <i>Ex Vivo</i> and <i>In Vivo</i> . Journal of Virology, 2021, 95, .	3.4	13
42	Neutralizing antibody activity against SARS-CoV-2 variants in gestational age–matched mother-infant dyads after infection or vaccination. JCI Insight, 2022, 7, .	5.0	13
43	Deep Phenotypic Analysis of Blood and Lymphoid T and NK Cells From HIV+ Controllers and ART-Suppressed Individuals. Frontiers in Immunology, 2022, 13, 803417.	4.8	12
44	Reduce and Control: A Combinatorial Strategy for Achieving Sustained HIV Remissions in the Absence of Antiretroviral Therapy. Viruses, 2020, 12, 188.	3.3	10
45	Interaction of Fibronectin With Semen Amyloids Synergistically Enhances HIV Infection. Journal of Infectious Diseases, 2014, 210, 1062-1066.	4.0	8
46	Hyaluronic acid is a negative regulator of mucosal fibroblast-mediated enhancement of HIV infection. Mucosal Immunology, 2021, 14, 1203-1213.	6.0	8
47	HIV-2 Depletes CD4 T Cells through Pyroptosis despite Vpx-Dependent Degradation of SAMHD1. Journal of Virology, 2019, 93, .	3.4	6
48	HIV-enhancing Amyloids Are Prevalent in Fresh Semen and Are a Determinant for Semen's Ability to Enhance HIV Infection: Relevance for HIV Transmission. AIDS Research and Human Retroviruses, 2014, 30, A183-A184.	1.1	4
49	Bystander CD4 T-cell death is inhibited by broadly neutralizing anti-HIV antibodies only at levels blocking cell-to-cell viral transmission. Journal of Biological Chemistry, 2021, 297, 101098.	3.4	3
50	Title is missing!. , 2020, 16, e1008450.		0
51	Title is missing!. , 2020, 16, e1008450.		Ο
52	Title is missing!. , 2020, 16, e1008450.		0
53	Title is missing!. , 2020, 16, e1008450.		0

4

#	Article	IF	CITATIONS
55	Title is missing!. , 2020, 16, e1008450.		0