List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2344934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pt/MnOx for toluene mineralization via ozonation catalysis at low temperature: SMSI optimization of surface oxygen species. Chemosphere, 2022, 286, 131754.	4.2	18
2	Controllable synthesis various morphologies of 3D hierarchical MnOx-TiO2 nanocatalysts for photothermocatalysis toluene and NO with free-ammonia. Journal of Colloid and Interface Science, 2022, 608, 3004-3012.	5.0	13
3	Strong Metal–Support Interaction in Pd/CeO ₂ Promotes the Catalytic Activity of Ethyl Acetate Oxidation. Journal of Physical Chemistry C, 2022, 126, 1450-1461.	1.5	21
4	Effective Remediation of Arsenic-Contaminated Soils by EK-PRB of Fe/Mn/C-LDH: Performance, Characteristics, and Mechanism. International Journal of Environmental Research and Public Health, 2022, 19, 4389.	1.2	5
5	Plasma-Catalytic CO ₂ Hydrogenation over a Pd/ZnO Catalyst: <i>In Situ</i> Probing of Gas-Phase and Surface Reactions. Jacs Au, 2022, 2, 1800-1810.	3.6	32
6	Importance of Semivolatile/Intermediate-Volatility Organic Compounds to Secondary Organic Aerosol Formation from Chinese Domestic Cooking Emissions. Environmental Science and Technology Letters, 2022, 9, 507-512.	3.9	17
7	Enhancement of catalytic toluene combustion over Pt–Co3O4 catalyst through in-situ metal-organic template conversion. Chemosphere, 2021, 262, 127738.	4.2	31
8	Bimetallic Pt-Co Nanoparticle Deposited on Alumina for Simultaneous CO and Toluene Oxidation in the Presence of Moisture. Processes, 2021, 9, 230.	1.3	8
9	Investigation into the roles of different oxygen species in toluene oxidation over manganese-supported platinum catalysts. Molecular Catalysis, 2021, 507, 111569.	1.0	10
10	Construction of Cu-Ce interface for boosting toluene oxidation: Study of Cu-Ce interaction and intermediates identified by in situ DRIFTS. Chinese Chemical Letters, 2021, 32, 3435-3439.	4.8	24
11	Immobilizing ultrafine bimetallic PtAg alloy onto uniform MnO2 microsphere as a highly active catalyst for CO oxidation. Chinese Chemical Letters, 2021, 32, 2057-2060.	4.8	16
12	Unraveling the decisive role of surface CeO2 nanoparticles in the Pt-CeO2/MnO2 hetero-catalysts for boosting toluene oxidation: Synergistic effect of surface decorated and intrinsic O-vacancies. Chemical Engineering Journal, 2021, 418, 129399.	6.6	132
13	Oriented growth of δ-MnO2 nanosheets over core-shell Mn2O3@δ-MnO2 catalysts: An interface-engineered effects for enhanced low-temperature methanol oxidation. Molecular Catalysis, 2021, 514, 111847.	1.0	8
14	In-situ atmosphere thermal pyrolysis of spindle-like Ce(OH)CO3 to fabricate Pt/CeO2 catalysts: Enhancing Pt–O–Ce bond intensity and boosting toluene degradation. Chemosphere, 2021, 279, 130658.	4.2	17
15	Transient inâ€situ DRIFTS Investigation of Catalytic Oxidation of Toluene over αâ€, γ―and βâ€MnO _{2ChemCatChem, 2020, 12, 1046-1054.}	1.8	33
16	Toluene oxidation over Co3+-rich spinel Co3O4: Evaluation of chemical and by-product species identified by in situ DRIFTS combined with PTR-TOF-MS. Journal of Hazardous Materials, 2020, 386, 121957.	6.5	141
17	Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: Oxygen-Vacancy defect engineering and involved intermediates using in situ DRIFTS. Applied Catalysis B: Environmental, 2020, 264, 118464.	10.8	446
18	Catalytic Performance of Toluene Combustion over Pt Nanoparticles Supported on Pore-Modified Macro-Meso-Microporous Zeolite Foam, Nanomaterials, 2020, 10, 30	1.9	19

#	Article	IF	CITATIONS
19	Enhancing catalytic toluene oxidation over MnO2@Co3O4 by constructing a coupled interface. Chinese Journal of Catalysis, 2020, 41, 1873-1883.	6.9	57
20	<i>In situ</i> anchored NiCo ₂ O ₄ on a nickel foam as a monolithic catalyst by electro-deposition for improved benzene combustion performance. CrystEngComm, 2020, 22, 2371-2379.	1.3	13
21	Macroscopic Hexagonal Co ₃ O ₄ Tubes Derived from Controllable Two-Dimensional Metal-Organic Layer Single Crystals: Formation Mechanism and Catalytic Activity. Inorganic Chemistry, 2020, 59, 3062-3071.	1.9	13
22	Recent advance on VOCs oxidation over layered double hydroxides derived mixed metal oxides. Chinese Journal of Catalysis, 2020, 41, 550-560.	6.9	61
23	Morphology-activity correlation of electrospun CeO2 for toluene catalytic combustion. Chemosphere, 2020, 247, 125860.	4.2	32
24	Low-temperature catalytic oxidation of benzene over nanocrystalline Cu–Mn composite oxides by facile sol–gel synthesis. New Journal of Chemistry, 2020, 44, 2442-2451.	1.4	32
25	Outstanding stability and highly efficient methane oxidation performance of palladium-embedded ultrathin mesoporous Co2MnO4 spinel catalyst. Applied Catalysis A: General, 2020, 598, 117571.	2.2	25
26	Effect of CeO2 morphologies on toluene catalytic combustion. Catalysis Today, 2019, 332, 177-182.	2.2	111
27	1D-Co3O4, 2D-Co3O4, 3D-Co3O4 for catalytic oxidation of toluene. Catalysis Today, 2019, 332, 160-167.	2.2	127
28	Synergistic effect for promoted benzene oxidation over monolithic CoMnAlO catalysts derived from in situ supported LDH film. Catalysis Today, 2019, 332, 132-138.	2.2	14
29	<i>In situ</i> DRIFT spectroscopy insights into the reaction mechanism of CO and toluene co-oxidation over Pt-based catalysts. Catalysis Science and Technology, 2019, 9, 4538-4551.	2.1	103
30	Elucidating the special role of strong metal–support interactions in Pt/MnO ₂ catalysts for total toluene oxidation. Nanoscale Horizons, 2019, 4, 1425-1433.	4.1	78
31	Synergetic effect over flame-made manganese doped CuO–CeO ₂ nanocatalyst for enhanced CO oxidation performance. RSC Advances, 2019, 9, 2343-2352.	1.7	17
32	Gaseous CO and toluene co-oxidation over monolithic core–shell Co ₃ O ₄ -based hetero-structured catalysts. Journal of Materials Chemistry A, 2019, 7, 16197-16210.	5.2	134
33	Self-Templating Synthesis of 3D Hierarchical NiCo2O4@NiO Nanocage from Hydrotalcites for Toluene Oxidation. Catalysts, 2019, 9, 352.	1.6	34
34	Catalytic Behaviour of Flame-Made CuO-CeO2 Nanocatalysts in Efficient CO Oxidation. Catalysts, 2019, 9, 256.	1.6	27
35	Mechanism of dichloromethane disproportionation over mesoporous TiO2 under low temperature. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	3.3	11
36	Design of 3-dimensionally self-assembled CeO2 hierarchical nanosphere as high efficiency catalysts for toluene oxidation. Chemical Engineering Journal, 2019, 369, 18-25.	6.6	74

#	Article	IF	CITATIONS
37	Leaf-like Co-ZIF-L derivatives embedded on Co2AlO4/Ni foam from hydrotalcites as monolithic catalysts for toluene abatement. Journal of Hazardous Materials, 2019, 364, 571-580.	6.5	65
38	Macroporous Ni foam-supported Co3O4 nanobrush and nanomace hybrid arrays for high-efficiency CO oxidation. Journal of Environmental Sciences, 2019, 75, 136-144.	3.2	15
39	Integrated Cobalt Oxide Based Nanoarray Catalysts with Hierarchical Architectures: Inâ€Situ Raman Spectroscopy Investigation on the Carbon Monoxide Reaction Mechanism. ChemCatChem, 2018, 10, 3012-3026.	1.8	43
40	Low-temperature CO oxidation over integrated penthorum chinense-like MnCo ₂ O ₄ arrays anchored on three-dimensional Ni foam with enhanced moisture resistance. Catalysis Science and Technology, 2018, 8, 1663-1676.	2.1	48
41	Vertically-aligned Co ₃ O ₄ arrays on Ni foam as monolithic structured catalysts for CO oxidation: effects of morphological transformation. Nanoscale, 2018, 10, 7746-7758.	2.8	76
42	Removal of hydrophobic volatile organic compounds with sodium hypochlorite and surfactant in a co-current rotating packed bed. Journal of Environmental Sciences, 2018, 64, 190-196.	3.2	12
43	Fabrication of silica supported Mn–Ce benzene oxidation catalyst by a simple and environment-friendly oxalate approach. Journal of Porous Materials, 2018, 25, 107-117.	1.3	12
44	General Synthesis of Transitionâ€Metal Oxide Hollow Nanospheres/Nitrogenâ€Doped Graphene Hybrids by Metal–Ammine Complex Chemistry for Highâ€Performance Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2018, 24, 2126-2136.	1.7	16
45	Controllable synthesis of 3D hierarchical Co ₃ O ₄ nanocatalysts with various morphologies for the catalytic oxidation of toluene. Journal of Materials Chemistry A, 2018, 6, 498-509.	5.2	268
46	<i>In situ</i> topotactic fabrication of direct Z-scheme 2D/2D ZnO/Zn _x Cd _{1â^'x} S single crystal nanosheet heterojunction for efficient photocatalytic water splitting. Catalysis Science and Technology, 2018, 8, 6458-6467.	2.1	49
47	Microstructural Refinement towards the Electrochemical Co–Deposition Recovery of Copper and Selenium. ChemistrySelect, 2018, 3, 11127-11133.	0.7	2
48	Ozone-enhanced deep catalytic oxidation of toluene over a platinum-ceria-supported BEA zeolite catalyst. Molecular Catalysis, 2018, 460, 7-15.	1.0	37
49	Hierarchical Co 3 O 4 nanostructures in-situ grown on 3D nickel foam towards toluene oxidation. Molecular Catalysis, 2018, 454, 12-20.	1.0	95
50	Hierarchically-structured hollow NiO nanospheres/nitrogen-doped graphene hybrid with superior capacity retention and enhanced rate capability for lithium-ion batteries. Applied Surface Science, 2017, 425, 461-469.	3.1	30
51	Determination of time- and size-dependent fine particle emission with varied oil heating in an experimental kitchen. Journal of Environmental Sciences, 2017, 51, 157-164.	3.2	39
52	Nanodendritic Platinum Supported on Î ³ -Alumina for Complete Benzene Oxidation. Particle and Particle Systems Characterization, 2016, 33, 620-627.	1.2	13
53	A reversible pH-modified fluorescence transition in block copolymer micelles enwrapped with a zinc(<scp>ii</scp>) fluorescent complex. RSC Advances, 2016, 6, 45708-45715.	1.7	1
54	Excellent low temperature performance for total benzene oxidation over mesoporous CoMnAl composited oxides from hydrotalcites. Journal of Materials Chemistry A, 2016, 4, 8113-8122.	5.2	112

#	Article	IF	CITATIONS
55	Rich surface Co(<scp>iii</scp>) ions-enhanced Co nanocatalyst benzene/toluene oxidation performance derived from Co ^{II} Co ^{III} layered double hydroxide. Nanoscale, 2016, 8, 15763-15773.	2.8	123
56	Promotional effects of Ce on the activity of Mn Al oxide catalysts derived from hydrotalcites for low temperature benzene oxidation. Catalysis Communications, 2016, 87, 102-105.	1.6	41
57	Promoted VOC oxidation over homogeneous porous Co _x NiAlO composite oxides derived from hydrotalcites: effect of preparation method and doping. RSC Advances, 2016, 6, 56874-56884.	1.7	19
58	Importance of porous structure and synergistic effect on the catalytic oxidation activities over hierarchical Mn–Ni composite oxides. Catalysis Science and Technology, 2016, 6, 1710-1718.	2.1	55
59	Effect of Cu substitution on promoted benzene oxidation over porous CuCo-based catalysts derived from layered double hydroxide with resistance of water vapor. Applied Catalysis B: Environmental, 2015, 166-167, 260-269.	10.8	175
60	Co-nanocasting synthesis of mesoporous Cu–Mn composite oxides and their promoted catalytic activities for gaseous benzene removal. Applied Catalysis B: Environmental, 2015, 162, 110-121.	10.8	159
61	Porous Mn–Co mixed oxide nanorod as a novel catalyst with enhanced catalytic activity for removal of VOCs. Catalysis Communications, 2014, 56, 134-138.	1.6	133