List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2344655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thin films of electron donor–acceptor complexes: characterisation of mixed-crystalline phases and implications for electrical doping. Materials Advances, 2022, 3, 1017-1034.	2.6	3
2	Porphyrin Functionalization of CsPbBrI ₂ /SiO ₂ Core–Shell Nanocrystals Enhances the Stability and Efficiency in Electroluminescent Devices. Advanced Optical Materials, 2022, 10, 2101945.	3.6	2
3	Doubly Stabilized Perovskite Nanocrystal Luminescence Downconverters. Advanced Optical Materials, 2022, 10, .	3.6	1
4	Detailed electro-optical modeling of thermally-activated delayed fluorescent OLEDs with different host-guest concentrations. Organic Electronics, 2022, 107, 106553.	1.4	3
5	Quantum Efficiency Enhancement of Lead-Halide Perovskite Nanocrystal LEDs by Organic Lithium Salt Treatment. ACS Applied Materials & Interfaces, 2022, 14, 28985-28996.	4.0	9
6	Understanding spontaneous orientation polarization of amorphous organic semiconducting films and its application to devices. Synthetic Metals, 2022, 288, 117101.	2.1	14
7	Are the rates of dexter transfer in TADF hyperfluorescence systems optically accessible?. Materials Horizons, 2021, 8, 1805-1815.	6.4	34
8	Coupled Organic–Inorganic Nanostructures with Mixed Organic Linker Molecules. ACS Applied Materials & Interfaces, 2021, 13, 37483-37493.	4.0	1
9	The Many Facets of Molecular Orientation in Organic Optoelectronics. Advanced Optical Materials, 2021, 9, 2101004.	3.6	35
10	Effect of a twin-emitter design strategy on a previously reported thermally activated delayed fluorescence organic light-emitting diode. Beilstein Journal of Organic Chemistry, 2021, 17, 2894-2905.	1.3	1
11	Application of Fluorescent Molecules as Noninvasive Sensors for Optoelectronic Characterization on Nanometer Length Scales. ACS Applied Electronic Materials, 2020, 2, 186-194.	2.0	7
12	Elucidating the performance limits of perovskite nanocrystal light emitting diodes. Journal of Luminescence, 2020, 220, 116939.	1.5	19
13	Efficient Skyâ€Blue Organic Lightâ€Emitting Diodes Using a Highly Horizontally Oriented Thermally Activated Delayed Fluorescence Emitter. Advanced Optical Materials, 2020, 8, 2001354.	3.6	31
14	Conductive Polymer Work Function Changes due to Residual Water: Impact of Temperatureâ€Đependent Dielectric Constant. Advanced Electronic Materials, 2020, 6, 2000408.	2.6	12
15	What Controls the Orientation of TADF Emitters?. Frontiers in Chemistry, 2020, 8, 750.	1.8	45
16	Fermi level pinned molecular donor/acceptor junctions: reduction of induced carrier density by interfacial charge transfer complexes. Journal of Materials Chemistry C, 2020, 8, 15199-15207.	2.7	1
17	Optical and Electrical Measurements Reveal the Orientation Mechanism of Homoleptic Iridium-Carbene Complexes. ACS Applied Materials & Interfaces, 2020, 12, 51709-51718.	4.0	18
18	Crystalline versus Amorphous Donor-Acceptor Blends: Influence of Layer Morphology on the Charge-Transfer Density of States. Physical Review Applied, 2020, 13, .	1.5	21

#	Article	IF	CITATIONS
19	Organic-based thermoelectrics. Journal of Materials Chemistry A, 2020, 8, 7495-7507.	5.2	67
20	Spontaneous orientation polarization in organic light-emitting diodes. Japanese Journal of Applied Physics, 2019, 58, SF0801.	0.8	57
21	Getting the Right Twist: Influence of Donor–Acceptor Dihedral Angle on Exciton Kinetics and Singlet–Triplet Gap in Deep Blue Thermally Activated Delayed Fluorescence Emitter. Journal of Physical Chemistry C, 2019, 123, 27778-27784.	1.5	40
22	State-of-Matter-Dependent Charge-Transfer Interactions between Planar Molecules for Doping Applications. Chemistry of Materials, 2019, 31, 1237-1249.	3.2	32
23	Manipulating the Transition Dipole Moment of CsPbBr ₃ Perovskite Nanocrystals for Superior Optical Properties. Nano Letters, 2019, 19, 2489-2496.	4.5	60
24	Organic LEDs and solar cells united. Nature Materials, 2019, 18, 432-433.	13.3	8
25	Dipolar Doping of Organic Semiconductors to Enhance Carrier Injection. Physical Review Applied, 2019, 12, .	1.5	19
26	Kinetic Modeling of Transient Photoluminescence from Thermally Activated Delayed Fluorescence. Journal of Physical Chemistry C, 2018, 122, 29173-29179.	1.5	45
27	Electronically Coupled, Two-Dimensional Assembly of Cu _{1.1} S Nanodiscs for Selective Vapor Sensing Applications. Journal of Physical Chemistry C, 2018, 122, 23720-23727.	1.5	7
28	Correlating Optical and Electrical Dipole Moments To Pinpoint Phosphorescent Dye Alignment in Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 31541-31551.	4.0	32
29	Enabling electron conduction in anisotropic hole transport materials for superior optical properties in organic light emitting diodes. Organic Electronics, 2018, 62, 216-219.	1.4	7
30	Low temperature processed NiOx hole transport layers for efficient polymer solar cells. Organic Electronics, 2017, 44, 59-66.	1.4	24
31	The use of charge extraction by linearly increasing voltage in polar organic light-emitting diodes. Journal of Applied Physics, 2017, 121, .	1.1	24
32	Tunable Anisotropic Photon Emission from Self-Organized CsPbBr ₃ Perovskite Nanocrystals. Nano Letters, 2017, 17, 4534-4540.	4.5	66
33	Evidence for Anisotropic Electronic Coupling of Charge Transfer States in Weakly Interacting Organic Semiconductor Mixtures. Journal of the American Chemical Society, 2017, 139, 8474-8486.	6.6	40
34	Charge Separation at Nanostructured Molecular Donor–Acceptor Interfaces. Advances in Polymer Science, 2017, , 77-108.	0.4	2
35	Determination of charge transport activation energy and injection barrier in organic semiconductor devices. Journal of Applied Physics, 2017, 122, .	1.1	33
36	Emitter Orientation as a Key Parameter in Organic Light-Emitting Diodes. Physical Review Applied, 2017, 8, .	1.5	158

#	Article	IF	CITATIONS
37	Plasmonic Purcell effect reveals obliquely ordered phosphorescent emitters in Organic LEDs. Scientific Reports, 2017, 7, 1826.	1.6	9
38	Energy Losses in Smallâ€Molecule Organic Photovoltaics. Advanced Energy Materials, 2017, 7, 1700237.	10.2	49
39	Mehr Licht durch orientierte Farbstoffmoleküle. Nachrichten Aus Der Chemie, 2016, 64, 514-518.	0.0	1
40	P-168: Combining Simulators and Experiments to Study the Impact of Polar OLED Materials. Digest of Technical Papers SID International Symposium, 2016, 47, 1750-1753.	0.1	0
41	Manipulation and control of the interfacial polarization in organic light-emitting diodes by dipolar doping. AIP Advances, 2016, 6, .	0.6	50
42	Simulation of OLEDs with a polar electron transport layer. Organic Electronics, 2016, 39, 244-249.	1.4	37
43	Organic Solar Cells with Open Circuit Voltage over 1.25 V Employing Tetraphenyldibenzoperiflanthene as the Acceptor. Journal of Physical Chemistry C, 2016, 120, 19027-19034.	1.5	16
44	On the role of polar molecules and the barrier for charge injection in OLEDs. , 2016, , .		0
45	Tuning the Microcavity of Organic Light Emitting Diodes by Solution Processable Polymer–Nanoparticle Composite Layers. ACS Applied Materials & Interfaces, 2016, 8, 2666-2672.	4.0	8
46	Temperature dependent competition between different recombination channels in organic heterojunction solar cells. Journal of Optics (United Kingdom), 2016, 18, 024007.	1.0	8
47	Dependence of Phosphorescent Emitter Orientation on Deposition Technique in Doped Organic Films. Chemistry of Materials, 2016, 28, 712-715.	3.2	54
48	Understanding and predicting the orientation ofÂheteroleptic phosphors in organic light-emittingAmaterials. Nature Materials, 2016, 15, 85-91.	13.3	217
49	Understanding and predicting the orientation of heteroleptic and homoleptic phosphors in organic light-emitting materials. , 2016, , .		0
50	Fluctuating Emission Dipole Moments of Aligned Phosphors in Organic Light-Emitting Diodes. , 2016, , .		0
51	Combined Electrical and Optical Analysis of the Efficiency Roll-Off in Phosphorescent Organic Light-Emitting Diodes. Physical Review Applied, 2015, 3, .	1.5	50
52	Thermally driven smoothening of molecular thin films: Structural transitions in n-alkane layers studied in real-time. Journal of Chemical Physics, 2015, 143, 164707.	1.2	9
53	Control of Molecular Dye Orientation in Organic Luminescent Films by the Glass Transition Temperature of the Host Material. Chemistry of Materials, 2015, 27, 2759-2762.	3.2	83
54	Analyzing degradation effects of organic light-emitting diodes via transient optical and electrical measurements. Journal of Applied Physics, 2015, 117, .	1.1	46

#	Article	IF	CITATIONS
55	Solvent vapor annealing on perylene-based organic solar cells. Journal of Materials Chemistry A, 2015, 3, 15700-15709.	5.2	29
56	From Simple Ligands to Complex Structures: Structural Diversity of Silver(I) Complexes Bearing Tetradentate (^{alkylene} bimpy) NHC Ligands. Organometallics, 2015, 34, 1522-1529.	1.1	15
57	Influence of molecular orientation on the coupling of surface plasmons to excitons in semitransparent inverted organic solar cells. Applied Physics Letters, 2015, 106, .	1.5	6
58	Coupled organic–inorganic nanostructures (COIN). Physical Chemistry Chemical Physics, 2015, 17, 97-111.	1.3	45
59	High-efficiency fluorescent organic light-emitting diodes enabled by triplet-triplet annihilation and horizontal emitter orientation. Applied Physics Letters, 2014, 105, 183304.	1.5	40
60	Amorphous vs crystalline exciton blocking layers at the anode interface in planar and planar-mixed heterojunction organic solar cells. Applied Physics Letters, 2014, 104, .	1.5	13
61	<i>V</i> _{oc} from a Morphology Point of View: the Influence of Molecular Orientation on the Open Circuit Voltage of Organic Planar Heterojunction Solar Cells. Journal of Physical Chemistry C, 2014, 118, 26462-26470.	1.5	78
62	Different orientation of the transition dipole moments of two similar Pt(II) complexes and their potential for high efficiency organic light-emitting diodes. Organic Electronics, 2014, 15, 3031-3037.	1.4	36
63	Investigation of the s-shape caused by the hole selective layer in bulk heterojunction solar cells. Organic Electronics, 2014, 15, 2862-2867.	1.4	27
64	Performance enhancement of diindenoperylene-based organic photovoltaic cells by nanocolumn-arrays. Organic Electronics, 2014, 15, 2210-2217.	1.4	9
65	Nonthermally activated exciton transport in crystalline organic semiconductor thin films. Physical Review B, 2014, 89, .	1.1	21
66	Extracting the emitter orientation in organic light-emitting diodes from external quantum efficiency measurements. Applied Physics Letters, 2014, 105, 043302.	1.5	11
67	Efficiency Enhancement of Organic Lightâ€Emitting Diodes Incorporating a Highly Oriented Thermally Activated Delayed Fluorescence Emitter. Advanced Functional Materials, 2014, 24, 5232-5239.	7.8	159
68	Organic Lightâ€Emitting Diodes with 30% External Quantum Efficiency Based on a Horizontally Oriented Emitter. Advanced Functional Materials, 2013, 23, 3896-3900.	7.8	495
69	The physical meaning of charge extraction by linearly increasing voltage transients from organic solar cells. Applied Physics Letters, 2013, 103, .	1.5	53
70	Efficiency Analysis of Organic Light-Emitting Diodes Based on Optical Simulations. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1-12.	1.9	22
71	Comprehensive efficiency analysis of organic light-emitting diodes featuring emitter orientation and triplet-to-singlet up-conversion. Applied Physics Letters, 2013, 103, .	1.5	11
72	Quantification of energy losses in organic solar cells from temperature-dependent device characteristics. Physical Review B, 2013, 88, .	1.1	62

#	Article	IF	CITATIONS
73	Three-terminal capacitance–voltage measurements of pentacene field-effect transistors during operation. Organic Electronics, 2013, 14, 2491-2496.	1.4	8
74	43.4: <i>Invited Paper</i> : Nonâ€isotropic Emitter Orientation in Organic Lightâ€emitting Diodes. Digest of Technical Papers SID International Symposium, 2013, 44, 604-607.	0.1	5
75	Device efficiency of organic lightâ€emitting diodes: Progress by improved light outcoupling. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 44-65.	0.8	349
76	Correlating Structure and Morphology to Device Performance of Molecular Organic Donor–Acceptor Photovoltaic Cells Based on Diindenoperylene (DIP) and C ₆₀ . Advanced Energy Materials, 2013, 3, 1075-1083.	10.2	31
77	Non-isotropic emitter orientation and its implications for efficiency analysis of organic light-emitting diodes. Proceedings of SPIE, 2012, , .	0.8	9
78	Correlation between interface energetics and open circuit voltage in organic photovoltaic cells. Applied Physics Letters, 2012, 101, 233301.	1.5	88
79	Investigation of energy transfer mechanisms between two adjacent phosphorescent emission layers. Journal of Applied Physics, 2012, 111, 113102.	1.1	10
80	Evidence for different origins of the magnetic field effect on current and electroluminescence in organic light-emitting diodes. Applied Physics Letters, 2012, 100, 123302.	1.5	12
81	Extraction of surface plasmons in organic light-emitting diodes via high-index coupling. Optics Express, 2012, 20, A205.	1.7	33
82	Charge accumulation at organic semiconductor interfaces due to a permanent dipole moment and its orientational order in bilayer devices. Journal of Applied Physics, 2012, 111, .	1.1	145
83	Degradation induced decrease of the radiative quantum efficiency in organic light-emitting diodes. Applied Physics Letters, 2012, 101, .	1.5	13
84	Bipolar charge transport in organic field-effect transistors: Enabling high mobilities and transport of photo-generated charge carriers by a molecular passivation layer. Organic Electronics, 2012, 13, 1614-1622.	1.4	46
85	Identification of different origins for s-shaped current voltage characteristics in planar heterojunction organic solar cells. Journal of Applied Physics, 2012, 111, .	1.1	86
86	Highly stable charge generation layers using caesium phosphate as n-dopants and inserting interlayers. Journal of Applied Physics, 2012, 111, 103107.	1.1	20
87	Thermodynamic Efficiency Limit of Molecular Donorâ€Acceptor Solar Cells and its Application to Diindenoperylene/C ₆₀ â€Based Planar Heterojunction Devices. Advanced Energy Materials, 2012, 2, 1100-1108.	10.2	84
88	Impedance spectroscopy for pentacene field-effect transistor: channel formation process in transistor operation. Proceedings of SPIE, 2011, , .	0.8	4
89	Light extraction from surface plasmons and waveguide modes in an organic light-emitting layer by nanoimprinted gratings. Optics Express, 2011, 19, A7.	1.7	65
90	Degradation effect on the magnetoresistance in organic light emitting diodes. Synthetic Metals, 2011, 161, 637-641.	2.1	10

#	Article	IF	CITATIONS
91	More light from organic light-emitting diodes. Europhysics News, 2011, 42, 20-24.	0.1	8
92	Oriented phosphorescent emitters boost OLED efficiency. Organic Electronics, 2011, 12, 1663-1668.	1.4	165
93	Approaching the ultimate open circuit voltage in thiophene based single junction solar cells by applying diindenoperylene as acceptor. Physica Status Solidi - Rapid Research Letters, 2011, 5, 241-243.	1.2	22
94	Hybrid organic–inorganic materials for integrated optoelectronic devices. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 264-275.	0.8	8
95	Achievement of balanced electron and hole mobility in copper-phthalocyanine field-effect transistors by using a crystalline aliphatic passivation layer. Organic Electronics, 2011, 12, 731-735.	1.4	55
96	Increased light outcoupling efficiency in dye-doped small molecule organic light-emitting diodes with horizontally oriented emitters. Organic Electronics, 2011, 12, 809-817.	1.4	201
97	Displacement current measurement of a pentacene metal–insulator–semiconductor device to investigate both quasi-static and dynamic carrier behavior using a combined waveform. Organic Electronics, 2011, 12, 1560-1565.	1.4	37
98	Diindenoperylene as ambipolar semiconductor: Influence of electrode materials and mobility asymmetry in organic field-effect transistors. Applied Physics Letters, 2011, 98, 233304.	1.5	34
99	Evidence for non-isotropic emitter orientation in a red phosphorescent organic light-emitting diode and its implications for determining the emitter's radiative quantum efficiency. Applied Physics Letters, 2011, 99, .	1.5	97
100	Charge Separation at Molecular Donor–Acceptor Interfaces: Correlation Between Morphology and Solar Cell Performance. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1707-1717.	1.9	53
101	High Fill Factor and Open Circuit Voltage in Organic Photovoltaic Cells with Diindenoperylene as Donor Material. Advanced Functional Materials, 2010, 20, 4295-4303.	7.8	175
102	Unoccupied states in copper phthalocyanine/fullerene blended films determined by inverse photoemission spectroscopy. Organic Electronics, 2010, 11, 1853-1857.	1.4	8
103	High-mobility copper-phthalocyanine field-effect transistors with tetratetracontane passivation layer and organic metal contacts. Journal of Applied Physics, 2010, 107, .	1.1	96
104	Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements. Applied Physics Letters, 2010, 96, .	1.5	199
105	Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes. Journal of Applied Physics, 2010, 107, .	1.1	135
106	Microstructure and charge carrier transport in phthalocyanine based. Materials Research Society Symposia Proceedings, 2009, 1154, 1.	0.1	3
107	Molecular semiconductor blends: Microstructure, charge carrier transport, and application in photovoltaic cells. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2683-2694.	0.8	47
108	Efficiency analysis of organic light-emitting diodes based on optical simulation. Organic Electronics, 2009, 10, 478-485.	1.4	62

#	Article	IF	CITATIONS
109	Mixed crystalline films of co-evaporated hydrogen- and fluorine-terminated phthalocyanines and their application in photovoltaic devices. Organic Electronics, 2009, 10, 1259-1267.	1.4	65
110	Transport properties of copper phthalocyanine based organic electronic devices. European Physical Journal: Special Topics, 2009, 180, 117-134.	1.2	22
111	Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation. Proceedings of SPIE, 2009, , .	0.8	48
112	Simulation based optimization of light-outcoupling in organic light-emitting diodes. Proceedings of SPIE, 2009, , .	0.8	24
113	Ambipolar charge carrier transport in organic semiconductor blends of phthalocyanine and fullerene. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 549-563.	0.8	35
114	Light extraction and optical loss mechanisms in organic light-emitting diodes. Proceedings of SPIE, 2008, , .	0.8	13
115	Surface plasmon resonance sensor utilizing an integrated organic light emitting diode. Optics Express, 2008, 16, 18426.	1.7	28
116	Bipolar transport in organic field-effect transistors: organic semiconductor blends versus contact modification. New Journal of Physics, 2008, 10, 065006.	1.2	16
117	Surface plasmon resonance sensor based on a planar polychromatic OLED light source. , 2008, , .		2
118	Ambipolar organic semiconductor blends for photovoltaic cells. , 2008, , .		11
119	Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency. Journal of Applied Physics, 2008, 104, .	1.1	236
120	Ambipolar Blends of Cuâ€Phthalocyanine and Fullerene: Charge Carrier Mobility, Electronic Structure and their Implications for Solar Cell Applications. Macromolecular Symposia, 2008, 268, 38-42.	0.4	14
121	Charge carrier injection and ambipolar transport in C ₆₀ /CuPc organic semiconductor blends. Journal of Physics: Conference Series, 2008, 100, 082043.	0.3	3
122	Ambipolar charge carrier transport in mixed organic layers of phthalocyanine and fullerene. Journal of Applied Physics, 2007, 101, 063709.	1.1	52
123	Electronic properties of organic semiconductor blends: Ambipolar mixtures of phthalocyanine and fullerene. Applied Physics Letters, 2007, 90, 212112.	1.5	39
124	Introduction to the Physics of Organic Semiconductors. , 2006, , 1-14.		14
125	Organic Molecular Beam Deposition: Growth Studies beyond the First Monolayer. , 2006, , 15-40.		2
126	Electronic Properties of Interfaces between Model Organic Semiconductors and Metals. , 2006, , 41-67.		2

#	Article	IF	CITATIONS
127	Exciton Energy Relaxation and Dissociation in Pristine and Doped Conjugated Polymers. , 2006, , 183-233.		1
128	Light extraction via leaky modes in organic light emitting devices. Optics Communications, 2006, 266, 191-197.	1.0	15
129	Differences of interface and bulk transport properties in polymer field-effect devices. Organic Electronics, 2006, 7, 276-286.	1.4	84
130	Fabrication and Analysis of Polymer Field-Effect Transistors. , 2006, , 343-391.		1
131	Analysis and Modeling of Organic Devices. , 2006, , 319-341.		Ο
132	Organic Single-Crystal Field-Effect Transistors. , 2006, , 393-432.		1
133	Optimizing OLED Structures for a-Si Display Applications via Combinatorial Methods and Enhanced Outcoupling. , 2006, , 511-527.		Ο
134	Insights into OLED Functioning through Coordinated Experimental Measurements and Numerical Model Simulations. , 2006, , 475-510.		0
135	Modification of PEDOT:PSS As Hole Injection Layer in Polymer LEDs. , 2006, , 451-473.		4
136	Thermal and Structural Properties of the Organic Semiconductor Alq3 and Characterization of Its Excited Electronic Triplet State. , 2006, , 95-128.		3
137	Kelvin Probe Study of Band Bending at Organic Semiconductor/Metal Interfaces: Examination of Fermi Level Alignment. , 2006, , 69-94.		2
138	Ultrafast Photophysics in Conjugated Polymers. , 2006, , 129-151.		0
139	Polarons in π-Conjugated Semiconductors: Absorption Spectroscopy and Spin-Dependent Recombination. , 2006, , 235-256.		Ο
140	The Origin of the Green Emission Band in Polyfluorene Type Polymers. , 2006, , 153-181.		0
141	Phosphorescence as a Probe of Exciton Formation and Energy Transfer in Organic Light Emitting Diodes. , 2006, , 257-269.		2
142	Electronic Traps in Organic Transport Layers. , 2006, , 271-303.		2
143	Charge Carrier Photogeneration and Transport in Polymer-Fullerene Bulk-Heterojunction Solar Cells. , 2006, , 433-450.		Ο
144	Charge Carrier Density Dependence of the Hole Mobility in Poly(p-phenylene vinylene). , 2006, , 305-318.		0

#	Article	IF	CITATIONS
145	55.1: Invited Paper: The Isomerism of the Alq[sub 3] Molecule: Evidence from Structural, Thermal and Photophysical Investigations. Digest of Technical Papers SID International Symposium, 2005, 36, 1648.	0.1	1
146	Glass transition and secondary relaxation in the charge-density-wave systemK0.3MoO3. Physical Review B, 2004, 69, .	1.1	22
147	Thermal, structural and photophysical properties of the organic semiconductor Alq3. Physica Status Solidi A, 2004, 201, 1095-1115.	1.7	125
148	Characterization of polymeric metal-insulator–semiconductor diodes. Synthetic Metals, 2004, 146, 359-363.	2.1	37
149	Preparation and Characterization of Blue-Luminescent Tris(8-hydroxyquinoline)-aluminum (Alq3). Advanced Functional Materials, 2003, 13, 108-112.	7.8	209
150	Molecular excitons in poly(p-phenylene-vinylene): a comparative study of PPV and an acetoxy substituted copolymer derivative. Chemical Physics Letters, 2003, 376, 411-417.	1.2	2
151	Vibrational analysis of different crystalline phases of the organic electroluminescent material aluminium tris(quinoline-8-olate) (Alq3). Physical Chemistry Chemical Physics, 2003, 5, 2958-2963.	1.3	47
152	The structure of the blue luminescent δ-phase of tris(8-hydroxyquinoline)aluminium(iii) (Alq3). Chemical Communications, 2002, , 2908-2909.	2.2	131
153	Picosecond amplified spontaneous emission bursts from a molecularly doped organic semiconductor. Journal of Applied Physics, 2002, 91, 6367.	1.1	15
154	Red electroluminescence from a 1,4-diketopyrrolo[3,4-c]pyrrole (DPP)-based conjugated polymer. Synthetic Metals, 2002, 130, 115-119.	2.1	82
155	Dispersive Electron Transport in tris(8-Hydroxyquinoline) Aluminum (Alq3) Probed by Impedance Spectroscopy. Physical Review Letters, 2002, 89, 286601.	2.9	129
156	A new crystalline phase of the electroluminescent material tris(8-hydroxyquinoline) aluminum exhibiting blueshifted fluorescence. Journal of Chemical Physics, 2001, 114, 9625-9632.	1.2	130
157	Subgap absorption in tris (8-hydroxyquinoline) aluminium. Synthetic Metals, 2001, 119, 559-560.	2.1	10
158	Space-charge limited conduction with a field and temperature dependent mobility in Alq light-emitting devices. Synthetic Metals, 2001, 122, 99-104.	2.1	90
159	Interfacial charges in organic hetero-layer light emitting diodes probed by capacitance–voltage measurements. Synthetic Metals, 2001, 122, 37-39.	2.1	34
160	Subgap absorption in poly(p-phenylene vinylene). Synthetic Metals, 2001, 122, 55-57.	2.1	9
161	Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells. Journal of Applied Physics, 2001, 90, 3632-3641.	1.1	311
162	Influence of trapped and interfacial charges in organic multilayer light-emitting devices. IBM Journal of Research and Development, 2001, 45, 77-88.	3.2	43

#	Article	IF	CITATIONS
163	Influence of trapped and interfacial charges in organic multilayer light-emitting devices. Journal of Applied Physics, 2001, 89, 1704.	1.1	147
164	The influence of deep traps on transient current–voltage characteristics of organic light-emitting diodes. Organic Electronics, 2001, 2, 105-120.	1.4	79
165	Device physics of organic light-emitting diodes based on molecular materials. Organic Electronics, 2001, 2, 1-36.	1.4	582
166	Diffusion photovoltage in poly(p -phenylenevinylene). Journal of Applied Physics, 2001, 89, 4410-4412.	1.1	21
167	Transient capacitance measurements of the transport and trap states distributions in a conjugated polymer. Organic Electronics, 2000, 1, 21-26.	1.4	34
168	Interfacial charges and electric field distribution in organic hetero-layer light-emitting devices. Organic Electronics, 2000, 1, 41-47.	1.4	114
169	Transient I-V-Characteristics of OLEDs with Deep Traps. , 2000, , .		2
170	Impedance spectroscopy of polymeric light emitting devices based on different poly(p-phenylene-vinylene) derivatives. Synthetic Metals, 2000, 111-112, 165-168.	2.1	5
171	Polarized electroluminescence from rubbing-aligned poly(p-phenylenevinylene). Synthetic Metals, 2000, 111-112, 177-180.	2.1	22
172	Temperature dependent device characteristics of organic light-emitting devices. Synthetic Metals, 2000, 111-112, 341-344.	2.1	56
173	Switching effect in poly(p-phenylenevinylene). Synthetic Metals, 2000, 111-112, 345-347.	2.1	9
174	Transient electroluminescence measurements on organic heterolayer light emitting diodes. Synthetic Metals, 2000, 111-112, 91-94.	2.1	44
175	Deep level transient spectroscopy (DLTS) of a poly(p-phenylene vinylene) Schottky diode. Synthetic Metals, 2000, 111-112, 273-276.	2.1	43
176	Influence of space charges on the current–voltage characteristic of organic light-emitting devices. Synthetic Metals, 2000, 111-112, 303-306.	2.1	20
177	Kelvin probe investigations of metal work functions and correlation to device performance of organic light-emitting devices. Synthetic Metals, 2000, 111-112, 295-297.	2.1	37
178	Polarized Electroluminescence from Rubbing-Aligned Poly(p-phenylenevinylene). Advanced Materials, 1999, 11, 1518-1521.	11.1	68
179	Charge carrier transport in poly(p-phenylenevinylene) light-emitting devices. Physical Chemistry Chemical Physics, 1999, 1, 1769-1776.	1.3	29
180	Anomalous current-voltage characteristics in organic light-emitting devices. Synthetic Metals, 1999, 102, 1034-1037.	2.1	33

#	Article	IF	CITATIONS
181	Photovoltaic effect in blend systems and heterostructures of poly(p-phenylenevinylene) and c60. Synthetic Metals, 1999, 101, 156-157.	2.1	14
182	Glass transition in CDW system o-TaS3. Synthetic Metals, 1999, 103, 2616-2619.	2.1	1
183	Determination of trapping parameters in poly(p-phenylenevinylene) light-emitting devices using thermally stimulated currents. Journal of Applied Physics, 1998, 84, 87-92.	1.1	64
184	Doping in PPV light-emitting devices fabricated on different substrates. Chemical Physics, 1998, 227, 243-252.	0.9	36
185	Doping and trap states in PPV light-emitting devices. Optical Materials, 1998, 9, 109-113.	1.7	10
186	Glass transition from a slush to a real glass in charge-density-wave compound TaS3. Physica B: Condensed Matter, 1998, 244, 167-171.	1.3	8
187	Phenylquinoxaline Polymers and Low Molar Mass Glasses as Electron-Transport Materials in Organic Light-Emitting Diodes. Macromolecules, 1998, 31, 6434-6443.	2.2	107
188	Effect of majority carrier space charges on minority carrier injection in dye doped polymer light-emitting devices. Journal of Applied Physics, 1998, 83, 4403-4409.	1.1	37
189	Temperature dependent broadband impedance spectroscopy on poly-(p-phenylene-vinylene) light-emitting diodes. Journal of Applied Physics, 1998, 83, 5045-5055.	1.1	95
190	Charge carrier mobility in poly(p-phenylenevinylene) studied by the time-of-flight technique. Applied Physics Letters, 1997, 71, 2686-2688.	1.5	151
191	Analysis of the structural and electronic properties of (fluoranthene)2PF6 and characterization of its (011) surface by scanning tunneling microscopy. Synthetic Metals, 1996, 80, 1-6.	2.1	3
192	Dielectric spectroscopy on the quasi–one-dimensional organic charge density wave conductor (Fluoranthene) 2 PF 6. Europhysics Letters, 1996, 35, 221-226.	0.7	6
193	dc-conduction mechanism and Peierls gap in organic and inorganic charge-density-wave conductors. Physical Review B, 1995, 51, 9533-9543.	1.1	30
194	Frequency dependent conductivity of the quasi-one-dimensional organic charge-density-wave conductor (Fluoranthene)2PF6. Synthetic Metals, 1995, 70, 1303-1304.	2.1	3
195	Peierls Instability and Charge-Density-Wave Transport in Fluoranthene and Perylene Radical Cation Salts. Acta Physica Polonica A, 1995, 87, 785-790.	0.2	6
196	Analysis of the dc conductivity of the quasi-one-dimensional charge-density-wave conductor (fluoranthene)2X. Physical Review B, 1994, 49, 5172-5181.	1.1	23
197	Charge transport in the quasi-one-dimensional organic charge density wave conductor (fluoranthene)2X. Synthetic Metals, 1993, 56, 2664-2669.	2.1	6
198	Microwave conductivity of the organic charge density wave conductor (fluoranthene)2X. Synthetic Metals, 1993, 56, 2635-2640.	2.1	8

#	Article	IF	CITATIONS
199	Charge density waves in organic conductors: (Fluoranthene)2X as a model system. Physica Scripta, 1993, T49B, 721-725.	1.2	7
200	CDW instability in the 2:l organic conductor (FA) ₂ PF ₆ . European Physical Journal Special Topics, 1993, 03, C2-137-C2-140.	0.2	10
201	DC Conductivity and Peierls instability in the quasi-one-dimensional organic charge density wave conductor (fluoranthene)2X. Annalen Der Physik, 1992, 504, 409-422.	0.9	14
202	Ambipolar Charge Carrier Transport in Organic Semiconductor Blends. , 0, , 347-372.		0
203	The Devil is in the Details: Tailoring the Surface Chemistry of Perovskite Nanocrystals for Novel Optoelectronic Devices. , 0, , .		0