
Shinichi Someya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2344568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sirt3 Mediates Reduction of Oxidative Damage and Prevention of Age-Related Hearing Loss under Caloric Restriction. Cell, 2010, 143, 802-812.	28.9	1,008
2	Current concepts in age-related hearing loss: Epidemiology and mechanistic pathways. Hearing Research, 2013, 303, 30-38.	2.0	433
3	Sirt3 Promotes the Urea Cycle and Fatty Acid Oxidation during Dietary Restriction. Molecular Cell, 2011, 41, 139-149.	9.7	344
4	Antioxidant compounds from bananas (Musa Cavendish). Food Chemistry, 2002, 79, 351-354.	8.2	329
5	Age-related hearing loss in C57BL/6J mice is mediated by Bak-dependent mitochondrial apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19432-19437.	7.1	287
6	Mitochondrial DNA Mutations Induce Mitochondrial Dysfunction, Apoptosis and Sarcopenia in Skeletal Muscle of Mitochondrial DNA Mutator Mice. PLoS ONE, 2010, 5, e11468.	2.5	225
7	Successful aging: Advancing the science of physical independence in older adults. Ageing Research Reviews, 2015, 24, 304-327.	10.9	172
8	Mitochondrial oxidative damage and apoptosis in age-related hearing loss. Mechanisms of Ageing and Development, 2010, 131, 480-486.	4.6	135
9	Caloric restriction suppresses apoptotic cell death in the mammalian cochlea and leads to prevention of presbycusis. Neurobiology of Aging, 2007, 28, 1613-1622.	3.1	122
10	Role of mitochondrial dysfunction and mitochondrial DNA mutations in age-related hearing loss. Hearing Research, 2007, 226, 185-193.	2.0	118
11	The role of mtDNA mutations in the pathogenesis of age-related hearing loss in mice carrying a mutator DNA polymerase Î ³ . Neurobiology of Aging, 2008, 29, 1080-1092.	3.1	83
12	Health Effects of Long-Term Rapamycin Treatment: The Impact on Mouse Health of Enteric Rapamycin Treatment from Four Months of Age throughout Life. PLoS ONE, 2015, 10, e0126644.	2.5	62
13	Mitochondrial ATP transporter depletion protects mice against liver steatosis and insulin resistance. Nature Communications, 2017, 8, 14477.	12.8	55
14	Addition of Exogenous NAD+ Prevents Mefloquine-Induced Neuroaxonal and Hair Cell Degeneration through Reduction of Caspase-3-Mediated Apoptosis in Cochlear Organotypic Cultures. PLoS ONE, 2013, 8, e79817.	2.5	45
15	Effects of Long-Term Exercise on Age-Related Hearing Loss in Mice. Journal of Neuroscience, 2016, 36, 11308-11319.	3.6	45
16	Mouse models of age-related mitochondrial neurosensory hearing loss. Molecular and Cellular Neurosciences, 2013, 55, 95-100.	2.2	41
17	Effects of Caloric Restriction on Age-Related Hearing Loss in Rodents and Rhesus Monkeys. Current Aging Science, 2010, 3, 20-25.	1.2	39
18	GSTA4 mediates reduction of cisplatin ototoxicity in female mice. Nature Communications, 2019, 10, 4150.	12.8	39

Shinichi Someya

#	Article	IF	CITATIONS
19	Genes encoding mitochondrial respiratory chain components are profoundly down-regulated with aging in the cochlea of DBA/2J mice. Brain Research, 2007, 1182, 26-33.	2.2	38
20	Maintaining good hearing: Calorie restriction, Sirt3, and glutathione. Experimental Gerontology, 2013, 48, 1091-1095.	2.8	38
21	Sirt1 deficiency protects cochlear cells and delays the early onset of age-related hearing loss in C57BL/6 mice. Neurobiology of Aging, 2016, 43, 58-71.	3.1	35
22	Loss of IDH2 Accelerates Age-related Hearing Loss in Male Mice. Scientific Reports, 2018, 8, 5039.	3.3	33
23	Intraoperative hemidiaphragm electrical stimulation reduces oxidative stress and upregulates autophagy in surgery patients undergoing mechanical ventilation: exploratory study. Journal of Translational Medicine, 2016, 14, 305.	4.4	32
24	Influence of Viral Vector–Mediated Delivery of Superoxide Dismutase and Catalase to the Hippocampus on Spatial Learning and Memory During Aging. Antioxidants and Redox Signaling, 2012, 16, 339-350.	5.4	29
25	A Conserved Transcriptional Signature of Delayed Aging and Reduced Disease Vulnerability Is Partially Mediated by SIRT3. PLoS ONE, 2015, 10, e0120738.	2.5	29
26	Loss of sestrin 2 potentiates the early onset of age-related sensory cell degeneration in the cochlea. Neuroscience, 2017, 361, 179-191.	2.3	28
27	GLAST Deficiency in Mice Exacerbates Gap Detection Deficits in a Model of Salicylate-Induced Tinnitus. Frontiers in Behavioral Neuroscience, 2016, 10, 158.	2.0	27
28	Studies on the regulatory mechanism of isocitrate dehydrogenase 2 using acetylation mimics. Scientific Reports, 2017, 7, 9785.	3.3	26
29	Ototoxic effects of carboplatin in organotypic cultures in chinchillas and rats. Journal of Otology, 2012, 7, 92-102.	1.0	20
30	Effects of calorie restriction on the lifespan and healthspan of POLG mitochondrial mutator mice. PLoS ONE, 2017, 12, e0171159.	2.5	17
31	Increased burden of mitochondrial DNA deletions and point mutations in early-onset age-related hearing loss in mitochondrial mutator mice. Experimental Gerontology, 2019, 125, 110675.	2.8	17
32	A Novel Mouse Model of MYO7A USH1B Reveals Auditory and Visual System Haploinsufficiencies. Frontiers in Neuroscience, 2019, 13, 1255.	2.8	17
33	Innovations in Geroscience to enhance mobility in older adults. Experimental Gerontology, 2020, 142, 111123.	2.8	17
34	CSR is not essential for the maintenance of antioxidant defenses in mouse cochlea: Possible role of the thioredoxin system as a functional backup for GSR. PLoS ONE, 2017, 12, e0180817.	2.5	12
35	"Passenger gene―problem in transgenic C57BL/6 mice used in hearing research. Neuroscience Research, 2020, 158, 6-15.	1.9	11
36	<i>G6pd</i> Deficiency Does Not Affect the Cytosolic Glutathione or Thioredoxin Antioxidant Defense in Mouse Cochlea. Journal of Neuroscience, 2017, 37, 5770-5781.	3.6	10

Shinichi Someya

#	Article	IF	CITATIONS
37	Cochlear detoxification: Role of alpha class glutathione transferases in protection against oxidative lipid damage, ototoxicity, and cochlear aging. Hearing Research, 2021, 402, 108002.	2.0	10
38	Ototoxic Model of Oxaliplatin and Protection from Nicotinamide Adenine Dinucleotide. Journal of Otology, 2013, 8, 63-71.	1.0	8
39	Sirt3 Promotes the Urea Cycle and Fatty Acid Oxidation during Dietary Restriction. Molecular Cell, 2011, 41, 493.	9.7	6
40	Txn2 haplodeficiency does not affect cochlear antioxidant defenses or accelerate the progression of cochlear cell loss or hearing loss across the lifespan. Experimental Gerontology, 2020, 141, 111078.	2.8	5
41	Synthesis of protodolomite from coral reef sand. Food Chemistry, 2006, 99, 15-18.	8.2	4
42	Effects of Gsta4 deficiency on age-related cochlear pathology and hearing loss in mice. Experimental Gerontology, 2020, 133, 110872.	2.8	4
43	Roles of Bak and Sirt3 in Paraquat-Induced Cochlear Hair Cell Damage. Neurotoxicity Research, 2021, 39, 1227-1237.	2.7	4
44	Aging of the sensory systems: hearing and vision disorders. , 2021, , 297-321.		2
45	Atmosphere Controlled Sintering of Coral Sand Powders by Hot Isostatic Pressing. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2005, 52, 28-34.	0.2	1
46	Lifestyle Intervention to Prevent Age-Related Hearing Loss: Calorie Restriction. , 2020, , 1-21.		1
47	Update on the Free Radical Theory of Aging – The Role of Oxidative Stress in Age-Related Hearing Loss. , 2014, , 3581-3598.		1
48	Age-Related Hearing Loss: Mitochondrial Biochemical Pathways and Molecular Targets. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 273-288.	0.4	1
49	Note in reference to "Sirt1 deficiency protects cochlear cells and delays the early onset of age-related hearing loss in C57BL/6 mice―[Neurobiol. Aging 43 (2016) 58–71]. Neurobiology of Aging, 2017, 59, 222.	3.1	Ο
50	Effects of Nutraceutical Antioxidants on Age-Related Hearing Loss. , 2010, , 113-124.		0
51	Genetic and Molecular Aspects of the Aging Auditory System. Springer Handbook of Auditory Research, 2020, , 9-34.	0.7	0