

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2344455/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Co ₃ O ₄ Hexagonal Platelets with Controllable Facets Enabling Highly Efficient Visibleâ€Light Photocatalytic Reduction of CO ₂ . Advanced Materials, 2016, 28, 6485-6490.	21.0	395
2	Visible Light Driven Water Splitting in a Molecular Device with Unprecedentedly High Photocurrent Density. Journal of the American Chemical Society, 2013, 135, 4219-4222.	13.7	330
3	Nucleophilic Attack of Hydroxide on a Mn ^V Oxo Complex: A Model of the Oâ^'O Bond Formation in the Oxygen Evolving Complex of Photosystem II. Journal of the American Chemical Society, 2009, 131, 8726-8727.	13.7	238
4	Highly oriented MOF thin film-based electrocatalytic device for the reduction of CO ₂ to CO exhibiting high faradaic efficiency. Journal of Materials Chemistry A, 2016, 4, 15320-15326.	10.3	166
5	Synthesis of Copoly(aryl ether ether nitrile)s Containing Sulfonic Acid Groups for PEM Applicationâ€. Macromolecules, 2005, 38, 3237-3245.	4.8	142
6	Assembly of highly efficient photocatalytic CO2 conversion systems with ultrathin two-dimensional metal–organic framework nanosheets. Applied Catalysis B: Environmental, 2018, 227, 54-60.	20.2	140
7	Towards A Solar Fuel Device: Lightâ€Driven Water Oxidation Catalyzed by a Supramolecular Assembly. Angewandte Chemie - International Edition, 2012, 51, 2417-2420.	13.8	126
8	Visible Light-Driven Water Splitting in Photoelectrochemical Cells with Supramolecular Catalysts on Photoanodes. ACS Catalysis, 2014, 4, 2347-2350.	11.2	115
9	Synthesis of Poly(arylene ether ether ketone ketone) Copolymers Containing Pendant Sulfonic Acid Groups Bonded to Naphthalene as Proton Exchange Membrane Materialsâ€. Macromolecules, 2004, 37, 6748-6754.	4.8	114
10	Artificial photosynthesis – functional devices for light driven water splitting with photoactive anodes based on molecular catalysts. Physical Chemistry Chemical Physics, 2014, 16, 12008.	2.8	84
11	Highâ€Performance Photoelectrochemical Cells Based on a Binuclear Ruthenium Catalyst for Visibleâ€Lightâ€Driven Water Oxidation. ChemSusChem, 2014, 7, 2801-2804.	6.8	79
12	Highly Active Threeâ€Dimensional NiFe/Cu ₂ O Nanowires/Cu Foam Electrode for Water Oxidation. ChemSusChem, 2017, 10, 1475-1481.	6.8	53
13	Design of photoanode-based dye-sensitized photoelectrochemical cells assembling with transition metal complexes for visible light-induced water splitting. Coordination Chemistry Reviews, 2018, 357, 130-143.	18.8	47
14	Selective electroreduction of dinitrogen to ammonia on a molecular iron phthalocyanine/O-MWCNT catalyst under ambient conditions. Chemical Communications, 2019, 55, 14111-14114.	4.1	46
15	A Cu ₂ Se–Cu ₂ O film electrodeposited on titanium foil as a highly active and stable electrocatalyst for the oxygen evolution reaction. Chemical Communications, 2018, 54, 4979-4982.	4.1	42
16	Selective nitrogen reduction to ammonia on iron porphyrin-based single-site metal–organic frameworks. Journal of Materials Chemistry A, 2021, 9, 4673-4678.	10.3	42
17	Highly efficient photocatalytic reduction of CO2 and H2O to CO and H2 with a cobalt bipyridyl complex. Journal of Energy Chemistry, 2018, 27, 502-506.	12.9	33
18	Perovskite Hydroxide CoSn(OH) ₆ Nanocubes for Efficient Photoreduction of CO ₂ to CO. ACS Sustainable Chemistry and Engineering, 2018, 6, 781-786.	6.7	29

Yan Gao

#	Article	IF	CITATIONS
19	Assembling Supramolecular Dyeâ€Sensitized Photoelectrochemical Cells for Water Splitting. ChemSusChem, 2015, 8, 3992-3995.	6.8	24
20	Boosting electrocatalytic reduction of nitrogen to ammonia under ambient conditions by alloy engineering. Chemical Communications, 2020, 56, 11477-11480.	4.1	20
21	A highly efficient FeP/CeO ₂ –NF hybrid electrode for the oxygen evolution reaction. Chemical Communications, 2020, 56, 4228-4231.	4.1	19
22	Artificial photosynthesis: photosensitizer/catalyst supramolecular assemblies for light driven water oxidation. Faraday Discussions, 2014, 176, 225-232.	3.2	18
23	Copper Oxide Film In-situ Electrodeposited from Cu(II) Complex as Highly Efficient Catalyst for Water Oxidation. Electrochimica Acta, 2017, 230, 501-507.	5.2	18
24	Synthesis and Photophysical and Electrochemical Study of Tyrosine Covalently Linked to High-Valent Copper(III) and Manganese(IV) Complexes. Helvetica Chimica Acta, 2007, 90, 553-561.	1.6	15
25	Highly efficient Fe x Ni 1â^' x O y /CP electrode prepared via simple soaking and heating treatments for electrocatalytic water oxidation. Journal of Energy Chemistry, 2017, 26, 428-432.	12.9	15
26	Effects of Br substituent on catalytic performance of Ru-bda (H2bda = 2,2'-bipyridine-6,6'-dicarboxylic) Tj ETQq0	0 0 rgBT /0 14:0	Overlock 10 ⁻ I4
27	A PMMA overlayer improving the surface-bound stability of photoanode for water splitting. Electrochimica Acta, 2016, 207, 130-134.	5.2	14
28	Water oxidation catalyzed by a charge-neutral mononuclear ruthenium(<scp>iii</scp>) complex. Dalton Transactions, 2017, 46, 1304-1310.	3.3	14

29	Synthesis and characterization of a novel phthalazinone poly(aryl ether sulfone ketone) with carboxyl group. Journal of Applied Polymer Science, 2003, 88, 1111-1114.	2.6	13
30	Silicon Compound Decorated Photoanode for Performance Enhanced Visible Light Driven Water Splitting. Electrochimica Acta, 2016, 215, 682-688.	5.2	13
31	A Cobaltâ€Based Film for Highly Efficient Electrocatalytic Water Oxidation in Neutral Aqueous Solution. ChemCatChem, 2016, 8, 2757-2760.	3.7	13
32	Design of a dinuclear ruthenium based catalyst with a rigid xanthene bridge for catalytic water oxidation. Inorganic Chemistry Communication, 2015, 55, 56-59.	3.9	12
33	Efficient molecular ruthenium catalysts containing anionic ligands for water oxidation. Dalton Transactions, 2016, 45, 18459-18464.	3.3	12
34	An ultrathin nickel-based film electrodeposited from a Ni-Tris molecular precursor for highly efficient electrocatalytic water oxidation. Electrochimica Acta, 2018, 283, 104-110.	5.2	12
35	Artificial photosynthesis: A two-electrode photoelectrochemical cell for light driven water oxidation with molecular components. Electrochimica Acta, 2014, 149, 337-340.	5.2	11
36	Insights into electrolyte effects on photoactivities of dye-sensitized photoelectrochemical cells for water splitting. Journal of Energy Chemistry, 2017, 26, 476-480.	12.9	10

3

Yan Gao

#	Article	IF	CITATIONS
37	Turning off hydrogen evolution via an organic dye photosensitizer in aqueous acetonitrile solution during photocatalytic CO2 reduction to CO. Molecular Catalysis, 2021, 500, 111299.	2.0	10
38	Bioinspired NiFe–gallate metal–organic frameworks for highly efficient oxygen evolution electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 7013-7019.	10.3	9
39	Highly effective electrochemical water oxidation by copper oxide film generated in situ from Cu(II) tricine complex. Chinese Journal of Catalysis, 2018, 39, 479-486.	14.0	8
40	V ₄ P _{6.98} /VO(PO ₃) ₂ as an Efficient Nonâ€Noble Metal Catalyst for Electrochemical Hydrogen Evolution in Alkaline Electrolyte. ChemElectroChem, 2019, 6, 1329-1332.	3.4	8
41	Ultrathin two-dimensional metal–organic framework nanosheets for efficient electrochemical CO2 reduction. Journal of Energy Chemistry, 2021, 57, 627-631.	12.9	8
42	A steady composite molecular anode Ru1/MWCNTsCOOH/GC for robust catalytic water oxidation. Journal of Energy Chemistry, 2019, 35, 49-54.	12.9	6
43	Highly efficient photocatalytic CO2 reduction by a ruthenium complex sensitizing g-C3N4/MOF hybrid photocatalyst. New Journal of Chemistry, 2021, 45, 8965-8970.	2.8	6
44	Protonation effect on catalytic water oxidation activity of a mononuclear Ru catalyst containing a free pyridine unit. Journal of Energy Chemistry, 2018, 27, 1402-1408.	12.9	5
45	Influences of the adsorption state of catalyst on the performance of DS-PEC for visible light driven water splitting. Journal of Energy Chemistry, 2017, 26, 163-167.	12.9	4
46	Tandem ZnCo-porphyrin metal–organic frameworks for enhanced photoreduction of CO ₂ . Inorganic Chemistry Frontiers, 2022, 9, 4369-4375.	6.0	3
47	Development of a ruthenium multi-pyridine complex as photosensitizer for highly efficient light driven water oxidation. Inorganic Chemistry Communication, 2017, 86, 10-13.	3.9	2
48	Role of water oxidation in the photoreduction of graphene oxide. Chemical Communications, 2019, 55, 1837-1840.	4.1	2
49	Highly efficient photocatalytic CO2 reduction with an organic dye as photosensitizer. Inorganic Chemistry Communication, 2021, 129, 108617.	3.9	2
50	Assembly of a Highly Efficient Molecular Device with (CNCbl)â€MWCNT/CP as Electrode for CO 2 Reduction Coupled to Water Oxidation. ChemElectroChem, 2021, 8, 3567-3571.	3.4	2
51	Crystal interpenetration featured NiWSe@NF acicular nanowires for performance enhanced water splitting. International Journal of Hydrogen Energy, 2021, , .	7.1	1
52	An efficient self-assembly Ru - Al material as heterogeneous catalyst for water oxidation. Inorganic Chemistry Communication, 2016, 70, 129-131.	3.9	0