$D = \frac{1}{2} D^{1/2} D^{0} D = \frac{1}{4} D^{1/2} D^{1/2} D^{1/2} D^{1/2} D^{0} D^{1/2} D^{0} D^{1/2} D^{0} D^{1/2} D^{0} D^{0} D^{1/2} D^{0} D^{0$

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2344336/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	New Production Solutions for Processing Silicon and Aluminum Production Waste. Metallurgist, 2013, 57, 455-459.	0.6	22
2	Experiment for Use of Bratsk Aluminum Plant Technogenic Waste as a Reducing Agent During Cast Iron Smelting. Metallurgist, 2018, 62, 150-155.	0.6	9
3	Determination of Optimal Fluorine Leaching Parameters from the Coal Part of the Waste Lining of Dismantled Electrolytic Cells for Aluminum Production. Journal of Mining Institute, 2019, 239, 544-549.	0.8	9
4	Optimizing the Charge Pelletizing Parameters for Silicon Smelting Based on Technogenic Materials. Metallurgist, 2019, 63, 115-122.	0.6	6
5	Study of Influence of Parameters of Leaching Fluorine from Spent Pot Lining. Materials Science Forum, 2019, 946, 552-557.	0.3	6
6	Basic physicochemical model of carbothermic smelting of silicon. Russian Journal of Non-Ferrous Metals, 2008, 49, 269-276.	0.6	5
7	Engineering Solutions for Cooling Aluminum Electrolyzer Exhaust Gases. Metallurgist, 2017, 60, 973-977.	0.6	5
8	Acidic-Ultrasonic Refining of Silicon by Carbothermic Technology. Metallurgist, 2015, 59, 258-263.	0.6	3
9	Analytical Investigations of Silicon Production Raw Materials and Products. Journal of Siberian Federal University: Chemistry, 2017, 10, 37-48.	0.7	3
10	ϴžĐΫĐ«Đ¢ ĐšĐžĐœĐΫĐ›Đ•ĐšĐ¡ĐОГО Đ~Đ¡ĐΫОЛЬЗОВĐĐĐ~Đ~ Đ—ĐžĐ›ĐžĐ¢ĐžĐįОДЕĐĐ–ĐĐ©	ЕÐ 0'. ₽žÐ;	Đ≪3Đ⊐Đ⁻ĐΫł
11	Effect of Charge Composition on Metallurgical Silicon Smelting Indices in Electric-Arc Furnaces. Metallurgist, 2017, 60, 1243-1249.	0.6	2
12	Mathematical model of silicon smelting process basing on pelletized charge from technogenic raw materials. IOP Conference Series: Materials Science and Engineering, 2018, 327, 022073.	0.6	1
13	Mathematical Modeling оf the Silicon Production Process from Pelletized Charge. Materials Science Forum, 2020, 989, 394-399.	0.3	1
14	Evaluation of the Effect of Nepheline Sinter Structure on Hydration Activity During Alumina Production. Metallurgist, 2018, 61, 1016-1022.	0.6	0
15	Quality Increase in the Gold-Containing Cathode Sediment. Materials Science Forum, 2019, 946, 575-579.	0.3	0
16	Thermodynamic Model of Silicon Smelting in Ore-Smelting Furnaces. Materials Science Forum, 0, 989, 504-510.	0.3	0
17	Low-Modulus Cryolite Production Methods Using Anode Gas Cleaning Solutions of Aluminum Smelting. Journal of Siberian Federal University: Chemistry, 2017, 10, 22-29.	0.7	0

18	RESULTS OF TESTING OF CМD-TECHNOLOGY UNDER PROCESSING OF TANTAL-NIOBIUM ORES. Sustainable Development of Mountain Territories, 2017, 9, 432-442.	0.3	0	

0

#	Article	IF	CITATIONS
19	ALGORITHM FOR STUDYING THE PROCESS OF VIBRATORY SEPARATION OF MINERAL RAW MATERIALS. Sustainable Development of Mountain Territories, 2020, 12, 137-144.	0.3	Ο

20 Physicochemical parameters of a hydrochemical technology employing sodium chloride to obtain cryolite used in aluminium production. , 2022, 26, 348-356.