Pyung-Gang Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2344312/publications.pdf

Version: 2024-02-01

18	378	11	18
papers	citations	h-index	g-index
18	18	18	428
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of i‰-hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microbial Cell Factories, 2015, 14, 45.	4.0	56
2	Phage-assisted evolution of botulinum neurotoxin proteases with reprogrammed specificity. Science, 2021, 371, 803-810.	12.6	46
3	Ecofriendly one-pot biosynthesis of indigo derivative dyes using CYP102G4 and PrnA halogenase. Dyes and Pigments, 2019, 162, 80-88.	3.7	40
4	fadD deletion and fadL overexpression in Escherichia coli increase hydroxy long-chain fatty acid productivity. Applied Microbiology and Biotechnology, 2014, 98, 8917-8925.	3.6	32
5	Biosynthesis of (â^')-5-Hydroxy-equol and 5-Hydroxy-dehydroequol from Soy Isoflavone, Genistein Using Microbial Whole Cell Bioconversion. ACS Chemical Biology, 2017, 12, 2883-2890.	3.4	31
6	P212A Mutant of Dihydrodaidzein Reductase Enhances ($<$ i>S)-Equol Production and Enantioselectivity in a Recombinant Escherichia coli Whole-Cell Reaction System. Applied and Environmental Microbiology, 2016, 82, 1992-2002.	3.1	30
7	In vitro characterization of CYP102G4 from Streptomyces cattleya: A self-sufficient P450 naturally producing indigo. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 60-67.	2.3	24
8	Structural Basis for Highly Efficient Production of Catechol Derivatives at Acidic pH by Tyrosinase from <i>Burkholderia thailandensis</i> . ACS Catalysis, 2018, 8, 10375-10382.	11.2	18
9	Polymeric solvent engineering for gram/liter scale production of a water-insoluble isoflavone derivative, (S)-equol. Applied Microbiology and Biotechnology, 2018, 102, 6915-6921.	3.6	18
10	Circular permutation of a bacterial tyrosinase enables efficient polyphenolâ€specific oxidation and quantitative preparation of orobol. Biotechnology and Bioengineering, 2019, 116, 19-27.	3.3	17
11	Recent advances in the microbial hydroxylation and reduction of soy isoflavones. FEMS Microbiology Letters, 2018, 365, .	1.8	12
12	In vivo Protein Evolution, Next Generation Protein Engineering Strategy: from Random Approach to Target-specific Approach. Biotechnology and Bioprocess Engineering, 2019, 24, 85-94.	2.6	12
13	Lightâ€Triggered In Situ Biosynthesis of Artificial Melanin for Skin Protection. Advanced Science, 2022, 9, e2103503.	11.2	12
14	Elucidating Cysteine-Assisted Synthesis of Indirubin by a Flavin-Containing Monooxygenase. ACS Catalysis, 2019, 9, 9539-9544.	11.2	11
15	Rewiring FadR regulon for the selective production of I‰-hydroxy palmitic acid from glucose in Escherichia coli. Metabolic Engineering, 2018, 47, 414-422.	7.0	9
16	Polyphenol-Hydroxylating Tyrosinase Activity under Acidic pH Enables Efficient Synthesis of Plant Catechols and Gallols. Microorganisms, 2021, 9, 1866.	3.6	4
17	Regioselective One-Pot Synthesis of Hydroxy-(S)-Equols Using Isoflavonoid Reductases and Monooxygenases and Evaluation of the Hydroxyequol Derivatives as Selective Estrogen Receptor Modulators and Antioxidants. Frontiers in Bioengineering and Biotechnology, 2022, 10, 830712.	4.1	3
18	Lightâ€Triggered In Situ Biosynthesis of Artificial Melanin for Skin Protection (Adv. Sci. 7/2022). Advanced Science, 2022, 9, .	11.2	3