

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2344073/publications.pdf Version: 2024-02-01

LIAVE SU

#	Article	IF	CITATIONS
1	Pressure-driven water flow through a carbon nanotube controlled by a lateral electric field. New Journal of Chemistry, 2022, 46, 8239-8249.	1.4	5
2	Promoting Electroosmotic Water Flow through a Carbon Nanotube by Weakening the Competition between Cations and Anions in a Lateral Electric Field. Langmuir, 2022, 38, 3530-3539.	1.6	7
3	Asymmetric transport and desalination in graphene channels. Physical Chemistry Chemical Physics, 2022, 24, 13245-13255.	1.3	8
4	Water jumps over a nanogap between two disjoint carbon nanotubes assisted by thermal fluctuation. Journal of Molecular Liquids, 2022, 362, 119719.	2.3	4
5	Effect of nanotube diameter on the transport of water molecules in electric fields. Journal of Molecular Liquids, 2021, 328, 115382.	2.3	13
6	Rectification Correlation between Water and Ions through Asymmetric Graphene Channels. Journal of Physical Chemistry B, 2021, 125, 11232-11241.	1.2	12
7	Electropumping Phenomenon in Modified Carbon Nanotubes. Langmuir, 2021, 37, 12318-12326.	1.6	13
8	Coupling transport of water and ions through a carbon nanotube: A novel desalination phenomenon induced by tuning the pressure direction. Desalination, 2020, 492, 114656.	4.0	12
9	Effect of temperature on the coupling transport of water and ions through a carbon nanotube in an electric field. Journal of Chemical Physics, 2020, 153, 184503.	1.2	24
10	Coupled Transport of Water and Ions through Graphene Nanochannels. Journal of Physical Chemistry C, 2020, 124, 17320-17330.	1.5	17
11	Osmotic Water Permeation through a Carbon Nanotube. Journal of Physical Chemistry Letters, 2020, 11, 940-944.	2.1	31
12	The Role of Interface lons in the Control of Water Transport through a Carbon Nanotube. Langmuir, 2019, 35, 13442-13451.	1.6	9
13	Dehydration-Driven Morphological Transformation of Flexible Vesicles on Liquid–Solid Interface. Journal of Physical Chemistry C, 2019, 123, 12268-12275.	1.5	0
14	How ions block the single-file water transport through a carbon nanotube. Physical Chemistry Chemical Physics, 2019, 21, 11298-11305.	1.3	12
15	Enhanced water transport through a carbon nanotube controlled by the lateral pressure. Nanotechnology, 2019, 30, 245707.	1.3	8
16	Understanding the role of pore size homogeneity in the water transport through graphene layers. Nanotechnology, 2018, 29, 225706.	1.3	4
17	A Nanometer Water Pump Induced by the Brownian and Non-Brownian Motion of a Graphene Sheet on a Membrane Surface. Nanoscale Research Letters, 2018, 13, 305.	3.1	1
18	Coupling Transport of Water and Ions through a Carbon Nanotube in a Pressure Difference: The Relation between Dynamics and Ion Structures. Journal of Physical Chemistry C, 2018, 122, 22178-22187.	1.5	25

JIAYE SU

#	Article	IF	CITATIONS
19	Bilayer graphene with ripples for reverse osmosis desalination. Carbon, 2018, 136, 21-27.	5.4	34
20	Asymmetric osmotic water permeation through a vesicle membrane. Journal of Chemical Physics, 2017, 146, 204902.	1.2	8
21	Interface nanoparticle control of a nanometer water pump. Physical Chemistry Chemical Physics, 2017, 19, 22406-22416.	1.3	16
22	Rational Design and Strain Engineering of Nanoporous Boron Nitride Nanosheet Membranes for Water Desalination. Journal of Physical Chemistry C, 2017, 121, 22105-22113.	1.5	102
23	Transport of a simple liquid through carbon nanotubes: Role of nanotube size. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 3487-3492.	0.9	17
24	Rectification effect on solitary waves in the symmetric Y-shaped granular chain. Granular Matter, 2017, 19, 1.	1.1	7
25	Hot channels engineer enhanced water transport. Journal of Materials Science, 2017, 52, 13504-13511.	1.7	3
26	Temperature dependence of the transport of singleâ€file water molecules through a hydrophobic channel. Journal of Computational Chemistry, 2016, 37, 1043-1047.	1.5	8
27	Coupling Transport of Water and Ions Through a Carbon Nanotube: The Role of Ionic Condition. Journal of Physical Chemistry C, 2016, 120, 11245-11252.	1.5	33
28	Ultra-fast single-file transport of a simple liquid beyond the collective behavior zone. Physical Chemistry Chemical Physics, 2016, 18, 20251-20255.	1.3	9
29	A current-driven nanometer water pump. Nanotechnology, 2016, 27, 095701.	1.3	7
30	Vesicle Geometries Enabled by Dynamically Trapped States. ACS Nano, 2016, 10, 2287-2294.	7.3	11
31	On the Origin of Water Flow through Carbon Nanotubes. ChemPhysChem, 2015, 16, 3488-3492.	1.0	13
32	Efficient and Large-Scale Dissipative Particle Dynamics Simulations on GPU. Soft Materials, 2014, 12, 185-196.	0.8	4
33	Asymmetric transport of water molecules through a hydrophobic conical channel. RSC Advances, 2014, 4, 40193-40198.	1.7	14
34	Water transport through a transmembrane channel formed by arylene ethynylene macrocycles. RSC Advances, 2014, 4, 3245-3252.	1.7	8
35	Translocation of a nanoparticle through a fluidic channel: the role of grafted polymers. Nanotechnology, 2014, 25, 185703.	1.3	1
36	Phase behavior and interfacial properties of symmetric polymeric ternary blends A/B/AB. Science China Chemistry, 2013, 56, 1710-1721.	4.2	7

JIAYE SU

#	Article	IF	CITATIONS
37	Translocation of a Charged Nanoparticle Through a Fluidic Nanochannel: The Interplay of Nanoparticle and Ions. Journal of Physical Chemistry B, 2013, 117, 11772-11779.	1.2	11
38	Water Permeation Through a Charged Channel. Journal of Physical Chemistry B, 2013, 117, 7685-7694.	1.2	35
39	Electric field induced orientation and self-assembly of carbon nanotubes in water. Soft Matter, 2012, 8, 1010-1016.	1.2	22
40	Effect of Nanochannel Dimension on the Transport of Water Molecules. Journal of Physical Chemistry B, 2012, 116, 5925-5932.	1.2	90
41	Control of Unidirectional Transport of Single-File Water Molecules through Carbon Nanotubes in an Electric Field. ACS Nano, 2011, 5, 351-359.	7.3	171
42	Effect of nanotube-length on the transport properties of single-file water molecules: Transition from bidirectional to unidirectional. Journal of Chemical Physics, 2011, 134, 244513.	1.2	27