Franz Josef Gassner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2343818/publications.pdf

Version: 2024-02-01

17 papers	275 citations	1040056 9 h-index	940533 16 g-index
18 all docs	18 docs citations	18 times ranked	563 citing authors

#	Article	lF	CITATIONS
1	Detecting Bacterial–Human Lateral Gene Transfer in Chronic Lymphocytic Leukemia. International Journal of Molecular Sciences, 2022, 23, 1094.	4.1	3
2	RNA editing contributes to epitranscriptome diversity in chronic lymphocytic leukemia. Leukemia, 2021, 35, 1053-1063.	7.2	17
3	SAMHD1 restrains aberrant nucleotide insertions at repair junctions generated by DNA end joining. Nucleic Acids Research, 2021, 49, 2598-2608.	14.5	15
4	AID Contributes to Accelerated Disease Progression in the TCL1 Mouse Transplant Model for CLL. Cancers, 2021, 13, 2619.	3.7	5
5	Evidence for Non-Cancer-Specific T Cell Exhaustion in the Tcl1 Mouse Model for Chronic Lymphocytic Leukemia. International Journal of Molecular Sciences, 2021, 22, 6648.	4.1	1
6	A POLE Splice Site Deletion Detected in a Patient with Biclonal CLL and Prostate Cancer: A Case Report. International Journal of Molecular Sciences, 2021, 22, 9410.	4.1	2
7	RNA Editing Alters miRNA Function in Chronic Lymphocytic Leukemia. Cancers, 2020, 12, 1159.	3.7	11
8	Exome sequencing of the TCL1 mouse model for CLL reveals genetic heterogeneity and dynamics during disease development. Leukemia, 2019, 33, 957-968.	7.2	22
9	Imprecision and DNA Break Repair Biased towards Incompatible End Joining in Leukemia. Molecular Cancer Research, 2018, 16, 428-438.	3.4	11
10	Investigating epigenetic effects of activation-induced deaminase in chronic lymphocytic leukemia. PLoS ONE, 2018, 13, e0208753.	2.5	4
11	Fludarabine and rituximab with escalating doses of lenalidomide followed by lenalidomide/rituximab maintenance in previously untreated chronic lymphocytic leukaemia (CLL): the REVLIRIT CLL-5 AGMT phase I/II study. Annals of Hematology, 2018, 97, 1825-1839.	1.8	6
12	TIGIT expressing CD4+T cells represent a tumor-supportive T cell subset in chronic lymphocytic leukemia. Oncolmmunology, 2018, 7, e1371399.	4.6	55
13	CD1d expression on chronic lymphocytic leukemia B cells affects disease progression and induces T cell skewing in CD8 positive and CD4CD8 double negative T cells. Oncotarget, 2016, 7, 49459-49469.	1.8	8
14	B cell receptor usage correlates with the sensitivity to CD40 stimulation and the occurrence of CD4+ T cell clonality in chronic lymphocytic leukemia. Haematologica, 2015, 100, e307-10.	3.5	10
15	Chronic lymphocytic leukaemia induces an exhausted T cell phenotype in the <scp>TCL</scp> 1 transgenic mouse model. British Journal of Haematology, 2015, 170, 515-522.	2.5	38
16	Chemotherapy-induced augmentation of T cells expressing inhibitory receptors is reversed by treatment with lenalidomide in chronic lymphocytic leukemia. Haematologica, 2014, 99, 67-69.	3.5	35
17	Fludarabine modulates composition and function of the T cell pool in patients with chronic lymphocytic leukaemia. Cancer Immunology, Immunotherapy, 2011, 60, 75-85.	4.2	31