
Francesca Cardinale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2343280/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrated transcriptomic and metabolic analyses reveal that ethylene enhances peach susceptibility to <i>Lasiodiplodia theobromae</i> -induced gummosis. Horticulture Research, 2022, 9, .	6.3	13
2	A structural homologue of the plant receptor D14 mediates responses to strigolactones in the fungal phytopathogen <i>Cryphonectria parasitica</i> . New Phytologist, 2022, 234, 1003-1017.	7.3	6
3	Tomato plant responses induced by sparingly available inorganic and organic phosphorus forms are modulated by strigolactones. Plant and Soil, 2022, 474, 355-372.	3.7	9
4	Transcriptome Analysis Points to BES1 as a Transducer of Strigolactone Effects on Drought Memory in <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2022, , .	3.1	7
5	Evaluation of Bioactivity of Strigolactone-Related Molecules by a Quantitative Luminometer Bioassay. Methods in Molecular Biology, 2021, 2309, 191-200.	0.9	1
6	The Potential of the Synthetic Strigolactone Analogue GR24 for the Maintenance of Photosynthesis and Yield in Winter Wheat under Drought: Investigations on the Mechanisms of Action and Delivery Modes. Plants, 2021, 10, 1223.	3.5	21
7	Strigolactones affect phosphorus acquisition strategies in tomato plants. Plant, Cell and Environment, 2021, 44, 3628-3642.	5.7	17
8	Phenotyping in Arabidopsis and Crops—Are We Addressing the Same Traits? A Case Study in Tomato. Genes, 2020, 11, 1011.	2.4	4
9	Strigolactones Control Root System Architecture and Tip Anatomy in Solanum lycopersicum L. Plants under P Starvation. Plants, 2020, 9, 612.	3.5	29
10	A novel <scp>strigolactoneâ€miR156</scp> module controls stomatal behaviour during drought recovery. Plant, Cell and Environment, 2020, 43, 1613-1624.	5.7	83
11	Strigolactones as Plant Hormones. , 2019, , 47-87.		9
12	The elusive ligand complexes of the DWARF14 strigolactone receptor. Journal of Experimental Botany, 2018, 69, 2345-2354.	4.8	36
13	Exogenous strigolactone interacts with abscisic acid-mediated accumulation of anthocyanins in grapevine berries. Journal of Experimental Botany, 2018, 69, 2391-2401.	4.8	64
14	Strigolactones: mediators of osmotic stress responses with a potential for agrochemical manipulation of crop resilience. Journal of Experimental Botany, 2018, 69, 2291-2303.	4.8	49
15	Structure–activity relationships of strigolactones via a novel, quantitative in planta bioassay. Journal of Experimental Botany, 2018, 69, 2333-2343.	4.8	20
16	The Legitimate Name of a Fungal Plant Pathogen and the Ethics of Publication in the Era of Traceability. Science and Engineering Ethics, 2017, 23, 631-633.	2.9	3
17	Evaluating Fumonisin Gene Expression in Fusarium verticillioides. Methods in Molecular Biology, 2017, 1542, 249-257.	0.9	1
18	Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytologist, 2016, 212, 954-963.	7.3	152

#	Article	IF	CITATIONS
19	Characterization of a multifunctional caffeoyl-CoA O -methyltransferase activated in grape berries upon drought stress. Plant Physiology and Biochemistry, 2016, 101, 23-32.	5.8	68
20	Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. Planta, 2015, 241, 1435-1451.	3.2	178
21	LDS1-produced oxylipins are negative regulators of growth, conidiation and fumonisin synthesis in the fungal maize pathogen Fusarium verticillioides. Frontiers in Microbiology, 2014, 5, 669.	3.5	37
22	Signaling role of Strigolactones at the interface between plants, (micro)organisms, and a changing environment. Journal of Plant Interactions, 2013, 8, 17-33.	2.1	22
23	Identification of a cis-acting factor modulating the transcription of FUM1, a key fumonisin-biosynthetic gene in the fungal maize pathogen Fusarium verticillioides. Fungal Genetics and Biology, 2013, 51, 42-49.	2.1	11
24	CAROTENOID CLEAVAGE DIOXYGENASE 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus. Journal of Experimental Botany, 2013, 64, 1967-1981.	4.8	114
25	Transcription of Genes in the Biosynthetic Pathway for Fumonisin Mycotoxins Is Epigenetically and Differentially Regulated in the Fungal Maize Pathogen Fusarium verticillioides. Eukaryotic Cell, 2012, 11, 252-259.	3.4	60
26	The computational-based structure of Dwarf14 provides evidence for its role as potential strigolactone receptor in plants. BMC Research Notes, 2012, 5, 307.	1.4	30
27	AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca2+ increase. Plant Physiology and Biochemistry, 2011, 49, 963-969.	5.8	11
28	Coordinated transcriptional regulation of the divinyl ether biosynthetic genes in tobacco by signal molecules related to defense. Plant Physiology and Biochemistry, 2010, 48, 225-231.	5.8	22
29	DNA-Based Tools for the Detection of Fusarium spp. Pathogenic on Maize. , 2010, , 107-129.		3
30	The ITS region as a taxonomic discriminator between Fusarium verticillioides and Fusarium proliferatum. Mycological Research, 2009, 113, 1137-1145.	2.5	40
31	Characterization of a Divinyl Ether Biosynthetic Pathway Specifically Associated with Pathogenesis in Tobacco. Plant Physiology, 2007, 143, 378-388.	4.8	81
32	The PP2C-Type Phosphatase AP2C1, Which Negatively Regulates MPK4 and MPK6, Modulates Innate Immunity, Jasmonic Acid, and Ethylene Levels in <i>Arabidopsis</i> . Plant Cell, 2007, 19, 2213-2224.	6.6	302
33	Wounding induces resistance to pathogens with different lifestyles in tomato: role of ethylene in crossâ€protection. Plant, Cell and Environment, 2007, 30, 1357-1365.	5.7	36
34	Induction of systemic resistance by a hypovirulent Rhizoctonia solani isolate in tomato. Physiological and Molecular Plant Pathology, 2006, 69, 160-171.	2.5	14
35	Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. Plant Cell, 2002, 14, 703-11.	6.6	82
36	Differential Activation of Four Specific MAPK Pathways by Distinct Elicitors. Journal of Biological Chemistry, 2000, 275, 36734-36740.	3.4	142

#	Article	IF	CITATIONS
37	SIMKK, a Mitogen-Activated Protein Kinase (MAPK) Kinase, Is a Specific Activator of the Salt Stress-Induced MAPK, SIMK. Plant Cell, 2000, 12, 2247.	6.6	1
38	SIMKK, a Mitogen-Activated Protein Kinase (MAPK) Kinase, Is a Specific Activator of the Salt Stress–Induced MAPK, SIMK. Plant Cell, 2000, 12, 2247-2258.	6.6	187
39	MAP Kinases in Plant Signal Transduction: VersatileTools for Signaling Stress, Cell Cycle, and More. , 2000, , 67-79.		Ο