Ali Naderi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2342788/publications.pdf Version: 2024-02-01

Διι Νληέρι

#	Article	IF	CITATIONS
1	Multiplierless Implementation of Noisy Izhikevich Neuron With Low-Cost Digital Design. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 1422-1430.	4.0	41
2	Temperature Dependence of Electrical Characteristics of Carbon Nanotube Field-Effect Transistors: A Quantum Simulation Study. Journal of Nanomaterials, 2012, 2012, 1-7.	2.7	27
3	Theoretical analysis of a novel dual gate metal–graphene nanoribbon field effect transistor. Materials Science in Semiconductor Processing, 2015, 31, 223-228.	4.0	26
4	LDC–CNTFET: A carbon nanotube field effect transistor with linear doping profile channel. Superlattices and Microstructures, 2011, 50, 145-156.	3.1	25
5	Double gate graphene nanoribbon field effect transistor with electrically induced junctions for source and drain regions. Journal of Computational Electronics, 2016, 15, 347-357.	2.5	24
6	Novel carbon nanotube field effect transistor with graded double halo channel. Superlattices and Microstructures, 2012, 51, 668-679.	3.1	23
7	Review—Methods in Improving the Performance of Carbon Nanotube Field Effect Transistors. ECS Journal of Solid State Science and Technology, 2016, 5, M131-M140.	1.8	23
8	Improvement in the performance of SOI-MESFETs by T-shaped oxide part at channel region: DC and RF characteristics. Superlattices and Microstructures, 2017, 111, 1022-1033.	3.1	23
9	Electrically-activated source extension graphene nanoribbon field effect transistor: Novel attributes and design considerations for suppressing short channel effects. Superlattices and Microstructures, 2014, 72, 305-318.	3.1	22
10	High Speed and Low Digital Resources Implementation of Hodgkin-Huxley Neuronal Model Using Base-2 Functions. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 275-287.	5.4	20
11	The effects of source/drain and gate overlap on the performance of carbon nanotube field effect transistors. Superlattices and Microstructures, 2012, 52, 962-976.	3.1	19
12	Improving band-to-band tunneling in a tunneling carbon nanotube field effect transistor by multi-level development of impurities in the drain region. European Physical Journal Plus, 2017, 132, 1.	2.6	18
13	Attributes in the Performance and Design Considerations of Asymmetric Drain and Source Regions in Carbon Nanotube Field Effect Transistors: Quantum Simulation Study. ECS Journal of Solid State Science and Technology, 2016, 5, M63-M68.	1.8	17
14	Double gate graphene nanoribbon field effect transistor with single halo pocket in channel region. Superlattices and Microstructures, 2016, 89, 170-178.	3.1	17
15	T-CNTFET with Gate-Drain Overlap and Two Different Gate Metals: A Novel Structure with Increased Saturation Current. ECS Journal of Solid State Science and Technology, 2016, 5, M3032-M3036.	1.8	16
16	A novel SOI-MESFET with parallel oxide-metal layers for high voltage and radio frequency applications. AEU - International Journal of Electronics and Communications, 2018, 83, 541-548.	2.9	16
17	A novel SOI-MESFET with symmetrical oxide boxes at both sides of gate and extended drift region into the buried oxide. AEU - International Journal of Electronics and Communications, 2018, 85, 91-98.	2.9	14
18	SDC-CNTFET: STEPWISE DOPING CHANNEL DESIGN IN CARBON NANOTUBE FIELD EFFECT TRANSISTORS FOR IMPROVING SHORT CHANNEL EFFECTS IMMUNITY. International Journal of Modern Physics B, 2014, 28, 1450048.	2.0	13

Ali Naderi

#	Article	IF	CITATIONS
19	Cut Off Frequency Variation by Ambient Heating in Tunneling p-i-n CNTFETs. ECS Journal of Solid State Science and Technology, 2018, 7, M6-M10.	1.8	13
20	SOI-MESFET with a layer of metal in buried oxide and a layer of SiO2 in channel to improve RF and breakdown characteristics. Materials Science in Semiconductor Processing, 2018, 88, 57-64.	4.0	12
21	Reduction in Self-Heating Effect of SOI MOSFETs by Three Vertical 4H-SiC Layers in the BOX. Silicon, 2020, 12, 975-986.	3.3	12
22	New structure of tunneling carbon nanotube FET with electrical junction in part of drain region and step impurity distribution pattern. AEU - International Journal of Electronics and Communications, 2020, 117, 153102.	2.9	12
23	Higher Current Ratio and Improved Ambipolar Behavior in Graphene Nanoribbon Field Effect Transistors by Symmetric Pocket Doping Profile. ECS Journal of Solid State Science and Technology, 2016, 5, M148-M153.	1.8	10
24	SLD-MOSCNT: A new MOSCNT with step–linear doping profile in the source and drain regions. International Journal of Modern Physics B, 2017, 31, 1650242.	2.0	8
25	An efficient structure for T-CNTFETs with intrinsic-n-doped impurity distribution pattern in drain region. Turkish Journal of Electrical Engineering and Computer Sciences, 2018, 26, 2335-2346.	1.4	8
26	The use of a Gaussian doping distribution in the channel region to improve the performance of a tunneling carbon nanotube field-effect transistor. Journal of Computational Electronics, 2020, 19, 283-290.	2.5	8
27	High breakdown voltage and high driving current in a novel silicon-on-insulator MESFET with high- and low-resistance boxes in the drift region. European Physical Journal Plus, 2018, 133, 1.	2.6	7
28	An Efficient Digital Realization of Retinal Light Adaptation in Cone Photoreceptors. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 5072-5080.	5.4	7
29	Improvement in the performance of grapheneÂnanoribbon p-i-nÂtunneling field effect transistors byÂapplyingÂlightlyÂdoped profile on drain region. International Journal of Modern Physics B, 2017, 31, 1750248.	2.0	6
30	Embedding Two P+ Pockets in the Buried Oxide of Nano Silicon on Insulator MOSFETs: Controlled Short Channel Effects and Electric Field. Silicon, 2020, 12, 2611-2618.	3.3	6
31	Proposal of a doping-less tunneling carbon nanotube field-effect transistor. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 265, 115016.	3.5	6
32	DC and RF characteristics improvement in SOI-MESFETs by inserting additional SiO2 layers and symmetric Si wells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 272, 115386.	3.5	4
33	Shifted gate electrode of silicon on insulator metal semiconductor FETs to amend the breakdown and transconductance. European Physical Journal Plus, 2021, 136, 1.	2.6	3
34	Implementation of cardiac Purkinje Fiber cells Model: High speed and low cost hardware. AEU - International Journal of Electronics and Communications, 2022, 153, 154269.	2.9	3
35	A novel metal–semiconductor device to enhance the current and unilateral power gains and OÂdB frequencies by SiO2 insertion in drift region. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 283, 115839.	3.5	1