Guoguang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2342763/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline. Applied Catalysis B: Environmental, 2018, 229, 96-104.	10.8	656
2	Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen. Applied Catalysis B: Environmental, 2018, 221, 510-520.	10.8	443
3	Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin. Applied Catalysis B: Environmental, 2017, 207, 103-113.	10.8	438
4	Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: Kinetics, mechanism, and antibacterial activity elimination. Applied Catalysis B: Environmental, 2018, 227, 114-122.	10.8	275
5	Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst: The significant roles of reactive oxygen species. Applied Catalysis B: Environmental, 2017, 204, 250-259.	10.8	229
6	An efficient metal-free phosphorus and oxygen co-doped g-C3N4 photocatalyst with enhanced visible light photocatalytic activity for the degradation of fluoroquinolone antibiotics. Chemical Engineering Journal, 2019, 374, 242-253.	6.6	222
7	Synthesis of a carbon dots modified g-C3N4/SnO2 Z-scheme photocatalyst with superior photocatalytic activity for PPCPs degradation under visible light irradiation. Journal of Hazardous Materials, 2021, 401, 123257.	6.5	145
8	Degradation of ketoprofen by sulfate radical-based advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices. Chemosphere, 2017, 189, 643-651.	4.2	133
9	Degradation of indometacin by simulated sunlight activated CDs-loaded BiPO4 photocatalyst: Roles of oxidative species. Applied Catalysis B: Environmental, 2018, 221, 129-139.	10.8	133
10	Highly active metal-free carbon dots/g-C3N4 hollow porous nanospheres for solar-light-driven PPCPs remediation: Mechanism insights, kinetics and effects of natural water matrices. Water Research, 2020, 172, 115492.	5.3	113
11	One-step synthesis of phosphorus/oxygen co-doped g-C3N4/anatase TiO2 Z-scheme photocatalyst for significantly enhanced visible-light photocatalysis degradation of enrofloxacin. Journal of Hazardous Materials, 2020, 386, 121634.	6.5	111
12	Decoration of TiO ₂ /g-C ₃ N ₄ Z-scheme by carbon dots as a novel photocatalyst with improved visible-light photocatalytic performance for the degradation of enrofloxacin. RSC Advances, 2017, 7, 34096-34103.	1.7	104
13	Study on heterogeneous photocatalytic ozonation degradation of ciprofloxacin by TiO2/carbon dots: Kinetic, mechanism and pathway investigation. Chemosphere, 2019, 227, 198-206.	4.2	90
14	Activation of peroxymonosulfate by Fe doped g-C3N4 /graphene under visible light irradiation for Trimethoprim degradation. Journal of Hazardous Materials, 2020, 384, 121435.	6.5	88
15	Photocatalytic degradation of clofibric acid by g-C3N4/P25 composites under simulated sunlight irradiation: The significant effects of reactive species. Chemosphere, 2017, 172, 193-200.	4.2	78
16	Carbon nitride modified hexagonal boron nitride interface as highly efficient blue LED light-driven photocatalyst. Applied Catalysis B: Environmental, 2018, 238, 410-421.	10.8	78
17	Facile synthesis of acid-modified UiO-66 to enhance the removal of Cr(VI) from aqueous solutions. Science of the Total Environment, 2019, 682, 118-127.	3.9	77
18	Degradation of triphenyl phosphate (TPhP) by CoFe2O4-activated peroxymonosulfate oxidation process: Kinetics, pathways, and mechanisms. Science of the Total Environment, 2019, 681, 331-338.	3.9	76

#	Article	IF	CITATIONS
19	Degradation of the flame retardant triphenyl phosphate by ferrous ion-activated hydrogen peroxide and persulfate: Kinetics, pathways, and mechanisms. Chemical Engineering Journal, 2019, 361, 929-936.	6.6	73
20	Photocatalytic degradation and removal mechanism of ibuprofen via monoclinic BiVO4 under simulated solar light. Chemosphere, 2016, 150, 139-144.	4.2	72
21	Degradation of propranolol by UV-activated persulfate oxidation: Reaction kinetics, mechanisms, reactive sites, transformation pathways and Gaussian calculation. Science of the Total Environment, 2019, 690, 878-890.	3.9	72
22	Superhigh co-adsorption of tetracycline and copper by the ultrathin g-C3N4 modified graphene oxide hydrogels. Journal of Hazardous Materials, 2022, 424, 127362.	6.5	70
23	A novel synthetic carbon and oxygen doped stalactite-like g-C3N4 for broad-spectrum-driven indometacin degradation. Journal of Hazardous Materials, 2020, 386, 121961.	6.5	66
24	Oxidation of diclofenac by aqueous chlorine dioxide: Identification of major disinfection byproducts and toxicity evaluation. Science of the Total Environment, 2014, 473-474, 437-445.	3.9	63
25	Ultrathin Ag2WO4-coated P-doped g-C3N4 nanosheets with remarkable photocatalytic performance for indomethacin degradation. Journal of Hazardous Materials, 2020, 392, 122355.	6.5	62
26	Investigation of the interaction between the fate of antibiotics in aquafarms and their level in the environment. Journal of Environmental Management, 2018, 207, 219-229.	3.8	61
27	Removal of pharmaceuticals and personal care products (PPCPs) from water and wastewater using novel sulfonic acid (–SO ₃ H) functionalized covalent organic frameworks. Environmental Science: Nano, 2019, 6, 3374-3387.	2.2	61
28	Template-free synthesis of oxygen-containing ultrathin porous carbon quantum dots/g-C ₃ N ₄ with superior photocatalytic activity for PPCPs remediation. Environmental Science: Nano, 2019, 6, 2565-2576.	2.2	55
29	Fabrication of plate-on-plate Z-scheme SnS2/Bi2MoO6 heterojunction photocatalysts with enhanced photocatalytic activity. Journal of Materials Science, 2018, 53, 10743-10757.	1.7	53
30	Accelerated photocatalytic degradation of quinolone antibiotics over Z-scheme MoO3/g-C3N4 heterostructure by peroxydisulfate under visible light irradiation: Mechanism; kinetic; and products. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 250-259.	2.7	51
31	Insights into the synergetic mechanism of a combined vis-RGO/TiO2/peroxodisulfate system for the degradation of PPCPs: Kinetics, environmental factors and products. Chemosphere, 2019, 216, 341-351.	4.2	49
32	Construction of double-functionalized g-C3N4 heterojunction structure via optimized charge transfer for the synergistically enhanced photocatalytic degradation of sulfonamides and H2O2 production. Journal of Hazardous Materials, 2022, 422, 126868.	6.5	49
33	A photocatalytic degradation strategy of PPCPs by a heptazine-based CN organic polymer (OCN) under visible light. Environmental Science: Nano, 2018, 5, 2325-2336.	2.2	47
34	A sulfate radical based ferrous–peroxydisulfate oxidative system for indomethacin degradation in aqueous solutions. RSC Advances, 2017, 7, 22802-22809.	1.7	46
35	Contamination and risk profiles of triclosan and triclocarban in sediments from a less urbanized region in China. Journal of Hazardous Materials, 2018, 357, 376-383.	6.5	45
36	Water soluble and insoluble components of PM2.5 and their functional cardiotoxicities on neonatal rat cardiomyocytes in vitro. Ecotoxicology and Environmental Safety, 2019, 168, 378-387.	2.9	42

#	Article	IF	CITATIONS
37	Defect-modified reduced graphitic carbon nitride (RCN) enhanced oxidation performance for photocatalytic degradation of diclofenac. Chemosphere, 2020, 258, 127343.	4.2	41
38	Integration of oxygen vacancies into BiOI via a facile alkaline earth ion-doping strategy for the enhanced photocatalytic performance toward indometacin remediation. Journal of Hazardous Materials, 2021, 412, 125147.	6.5	40
39	Chemical identity and cardiovascular toxicity of hydrophobic organic components in PM2.5. Ecotoxicology and Environmental Safety, 2020, 201, 110827.	2.9	39
40	Oxidation of diclofenac by potassium ferrate (VI): Reaction kinetics and toxicity evaluation. Science of the Total Environment, 2015, 506-507, 252-258.	3.9	35
41	Heteroaggregation and sedimentation of graphene oxide with hematite colloids: Influence of water constituents and impact on tetracycline adsorption. Science of the Total Environment, 2019, 647, 708-715.	3.9	35
42	In-situ stabilizing surface oxygen vacancies of TiO2 nanowire array photoelectrode by N-doped carbon dots for enhanced photoelectrocatalytic activities under visible light. Journal of Catalysis, 2020, 382, 212-227.	3.1	32
43	Experimental and theoretical investigation on photodegradation mechanisms of naproxen and its photoproducts. Chemosphere, 2019, 227, 142-150.	4.2	31
44	Dual metal-free polymer reactive sites for the efficient degradation of diclofenac by visible light-driven oxygen reduction to superoxide radical and hydrogen peroxide. Environmental Science: Nano, 2019, 6, 2577-2590.	2.2	30
45	Phosphate-modified m-Bi2O4 enhances the absorption and photocatalytic activities of sulfonamide: Mechanism, reactive species, and reactive sites. Journal of Hazardous Materials, 2020, 384, 121443.	6.5	30
46	Efficient removal of triclosan via peroxymonosulfate activated by a ppb level dosage of Co(II) in water: Reaction kinetics, mechanisms and detoxification. Ecotoxicology and Environmental Safety, 2020, 198, 110676.	2.9	29
47	Photodegradation of gemfibrozil in aqueous solution under UV irradiation: kinetics, mechanism, toxicity, and degradation pathways. Environmental Science and Pollution Research, 2016, 23, 14294-14306.	2.7	28
48	Plasmonic Ag nanoparticles decorated copper-phenylacetylide polymer for visible-light-driven photocatalytic reduction of Cr(VI) and degradation of PPCPs: Performance, kinetics, and mechanism. Journal of Hazardous Materials, 2022, 425, 127599.	6.5	27
49	One-Step Synthesis of Hierarchical Flower-like SnO ₂ /BiOCOOH Microspheres with Enhanced Light Response for the Removal of Pollutants. Langmuir, 2020, 36, 9005-9013.	1.6	23
50	Smart Removal of Dye Pollutants via Dark Adsorption and Light Desorption at Recyclable Bi ₂ O ₂ CO ₃ Nanosheets Interface. ACS Applied Materials & Interfaces, 2020, 12, 20490-20499.	4.0	23
51	Analysis of azole fungicides in fish muscle tissues: Multi-factor optimization and application to environmental samples. Journal of Hazardous Materials, 2017, 324, 535-543.	6.5	22
52	Evaluation and optimization of sample pretreatment for GC/MS-based metabolomics in embryonic zebrafish. Talanta, 2020, 207, 120260.	2.9	22
53	Enhanced Cu(II)-mediated fenton-like oxidation of antimicrobials in bicarbonate aqueous solution: Kinetics, mechanism and toxicity evaluation. Environmental Pollution, 2019, 252, 1933-1941.	3.7	21
54	Analysis of transcriptional response in zebrafish eleutheroembryos exposed to climbazole: Signaling pathways and potential biomarkers. Environmental Toxicology and Chemistry, 2019, 38, 794-805.	2.2	20

#	Article	IF	CITATIONS
55	Impact of Humin on Soil Adsorption and Remediation of Cd(II), Pb(II), and Cu(II). Soil and Sediment Contamination, 2016, 25, 700-715.	1.1	18
56	Effective stabilization of atomic hydrogen by Pd nanoparticles for rapid hexavalent chromium reduction and synchronous bisphenol A oxidation during the photoelectrocatalytic process. Journal of Hazardous Materials, 2022, 422, 126974.	6.5	18
57	Remediation of Cd(II)-contaminated soil via humin-enhanced electrokinetic technology. Environmental Science and Pollution Research, 2017, 24, 3430-3436.	2.7	17
58	Thermo-activated peroxydisulfate oxidation of indomethacin: Kinetics study and influences of co-existing substances. Chemosphere, 2018, 212, 1067-1075.	4.2	17
59	UV-Induced Photodegradation of Naproxen Using a Nano γ-FeOOH Composite: Degradation Kinetics and Photocatalytic Mechanism. Frontiers in Chemistry, 2019, 7, 847.	1.8	17
60	Fe3O4-assisted laser desorption ionization mass spectrometry for typical metabolite analysis and localization: Influencing factors, mechanisms, and environmental applications. Journal of Hazardous Materials, 2020, 388, 121817.	6.5	16
61	Activation of peracetic acid via Co3O4 with double-layered hollow structures for the highly efficient removal of sulfonamides: Kinetics insights and assessment of practical applications. Journal of Hazardous Materials, 2022, 431, 128579.	6.5	16
62	Effect of halide ions on the photodegradation of ibuprofen in aqueous environments. Chemosphere, 2017, 166, 412-417.	4.2	15
63	Photochemical transformation of C3N4 under UV irradiation: Implications for environmental fate and photocatalytic activity. Journal of Hazardous Materials, 2020, 394, 122557.	6.5	15
64	Photocatalyst with a metal-free electron–hole pair double transfer mechanism for pharmaceutical and personal care product degradation. Environmental Science: Nano, 2019, 6, 3292-3306.	2.2	14
65	GC-MS/MS analysis for source identification of emerging POPs in PM2.5. Ecotoxicology and Environmental Safety, 2020, 193, 110368.	2.9	13
66	One-step synthesis of carbon nitride nanobelts for the enhanced photocatalytic degradation of organic pollutants through peroxydisulfate activation. Environmental Science: Nano, 2021, 8, 245-257.	2.2	13
67	Incorporating Oxygen Atoms in a SnS ₂ Atomic Layer to Simultaneously Stabilize Atomic Hydrogen and Accelerate the Generation of Hydroxyl Radicals for Water Decontamination. Environmental Science & Technology, 2022, 56, 4980-4987.	4.6	13
68	Enhanced bioelectricity generation and azo dye treatment in a reversible photo-bioelectrochemical cell by using novel anthraquinone-2,6-disulfonate (AQDS)/MnO x -doped polypyrrole film electrodes. Bioresource Technology, 2017, 225, 40-47.	4.8	12
69	Aquatic photodegradation of clofibric acid under simulated sunlight irradiation: kinetics and mechanism analysis. RSC Advances, 2018, 8, 27796-27804.	1.7	12
70	Synchronous construction of a porous intramolecular D-A conjugated polymer via electron donors for superior photocatalytic decontamination. Journal of Hazardous Materials, 2022, 424, 127379.	6.5	12
71	Transformation of atenolol by a laccase-mediator system: Efficiencies, effect of water constituents, and transformation pathways. Ecotoxicology and Environmental Safety, 2019, 183, 109555.	2.9	11
72	Interaction of graphene oxide with artificial cell membranes: Role of anionic phospholipid and cholesterol in nanoparticle attachment and membrane disruption. Colloids and Surfaces B: Biointerfaces, 2021, 202, 111685.	2.5	11

#	Article	IF	CITATIONS
73	Photocatalytic transformation of climbazole and 4-chlorophenol formation using a floral array of chromium-substituted magnetite nanoparticles activated with peroxymonosulfate. Environmental Science: Nano, 2019, 6, 2986-2999.	2.2	10
74	Removal of lead ions by two Fe Mn oxide substrate adsorbents. Science of the Total Environment, 2021, 773, 145670.	3.9	10
75	Ozonation of ketoprofen with nitrate in aquatic environments: kinetics, pathways, and toxicity. RSC Advances, 2018, 8, 10541-10548.	1.7	9
76	Oxidation of indometacin by ferrate (VI): kinetics, degradation pathways, and toxicity assessment. Environmental Science and Pollution Research, 2017, 24, 10786-10795.	2.7	8
77	A novel visible light controllable adsorption-desorption system with a magnetic recyclable adsorbent. Science of the Total Environment, 2020, 707, 136025.	3.9	7
78	Transformation of carbon dots by ultraviolet irradiation, ozonation, and chlorination processes: kinetics and mechanisms. Environmental Science: Nano, 2022, 9, 324-334.	2.2	7
79	Bi ₂ O ₂ CO ₃ /Bi ₂ O ₃ Z-scheme photocatalyst with oxygen vacancies and Bi for enhanced visible-light photocatalytic degradation of tetracycline. Environmental Science: Nano, 2022, 9, 2104-2120.	2.2	6
80	Oxidative treatment of diclofenac via ferrate(VI) in aqueous media: effect of surfactant additives. Water Science and Technology, 2017, 75, 1342-1350.	1.2	4
81	The bioavailability of the heavy metals in the surface sediment from Pearl River Guangzhou Section. , 2011, , .		1
82	Evaluation on Joint Acute Toxicity of Bata-Cypermethrin and Chlorpyrifos to Freshwater Protozoan Community. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
83	Aqueous Photodegradation of Chlorobenzene Induced by Nitrate. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
84	Effects of Rac-Metalaxyl and R-Metalaxyl on Juvenile Zebrafish (Danio rerio). , 2010, , .		0
85	N-Doped Trititanate Nanotubes: Preparation, Characterization and Visible-Light Sensitivity. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0