
Bernard Dubray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2342438/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Joint EANM/SNMMI/ESTRO practice recommendations for the use of 2-[18F]FDG PET/CT external beam radiation treatment planning in lung cancer V1.0. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 1386-1406.	3.3	24
2	Perspective paper about the joint EANM/SNMMI/ESTRO practice recommendations for the use of 2-[18F]FDG-PET/CT external beam radiation treatment planning in lung cancer. Radiotherapy and Oncology, 2022, 168, 37-39.	0.3	4
3	SegTHOR: Segmentation of Thoracic Organs at Risk in CT images. , 2020, , .		40
4	Prognostic value of sarcopenia in patients treated by Radiochemotherapy for locally advanced oesophageal cancer. Radiation Oncology, 2020, 15, 116.	1.2	17
5	Respiratory gated multistatic PET reconstructions to delineate radiotherapy target volume in patients with mobile lung tumours. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2020, , .	0.4	1
6	Radiotherapy boost in patients with hypoxic lesions identified by 18F-FMISO PET/CT in non-small-cell lung carcinoma: can we expect a better survival outcome without toxicity? [RTEP5 long-term follow-up]. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1448-1456.	3.3	40
7	Multiorgan segmentation using distance-aware adversarial networks. Journal of Medical Imaging, 2019, 6, 1.	0.8	24
8	FDG and FMISO PET-guided dose escalation with intensity-modulated radiotherapy in lung cancer. Radiation Oncology, 2018, 13, 208.	1.2	34
9	How to use PET/CT in the evaluation of response to radiotherapy. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2018, 62, 152-164.	0.4	10
10	Phase II Study of a Radiotherapy Total Dose Increase in Hypoxic Lesions Identified by ¹⁸ F-Misonidazole PET/CT in Patients with Non–Small Cell Lung Carcinoma (RTEP5 Study). Journal of Nuclear Medicine, 2017, 58, 1045-1053.	2.8	70
11	Salvage radiotherapy with or without short-term hormone therapy for rising prostate-specific antigen concentration after radical prostatectomy (GETUG-AFU 16): a randomised, multicentre, open-label phase 3 trial. Lancet Oncology, The, 2016, 17, 747-756.	5.1	317
12	Areas of High ¹⁸ F-FDG Uptake on Preradiotherapy PET/CT Identify Preferential Sites of Local Relapse After Chemoradiotherapy for Non–Small Cell Lung Cancer. Journal of Nuclear Medicine, 2015, 56, 196-203.	2.8	59
13	FDC-PET/CT during concomitant chemo radiotherapy for esophageal cancer: Reducing target volumes to deliver higher radiotherapy doses. Acta Oncológica, 2015, 54, 909-915.	0.8	21
14	High FDG uptake areas on pre-radiotherapy PET/CT identify preferential sites of local relapse after chemoradiotherapy for locally advanced oesophageal cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 858-867.	3.3	38
15	Bevacizumab enhances efficiency of radiotherapy in a lung adenocarcinoma rodent model: Role of αvβ3 imaging in determining optimal window. Nuclear Medicine and Biology, 2015, 42, 923-930.	0.3	11
16	Automatic lung tumor segmentation on PET images based on random walks and tumor growth model. , 2014, , .		3
17	Monitoring tumour response during chemo-radiotherapy: a parametric method using FDG-PET/CT images in patients with oesophageal cancer. EJNMMI Research, 2014, 4, 12.	1.1	19
18	FDG PET during radiochemotherapy is predictive of outcome at 1 year in non-small-cell lung cancer patients: a prospective multicentre study (RTEP2). European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 1057-1065.	3.3	48

BERNARD DUBRAY

#	Article	IF	CITATIONS
19	FDG-PET imaging for radiotherapy target volume definition in lung cancer. Irbm, 2014, 35, 41-45.	3.7	1
20	Delineation of small mobile tumours with FDG-PET/CT in comparison to pathology in breast cancer patients. Radiotherapy and Oncology, 2014, 112, 407-412.	0.3	6
21	Pretreatment metabolic tumour volume is predictive of disease-free survival and overall survival in patients with oesophageal squamous cell carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 2008-2016.	3.3	43
22	Random Forests to Predict Rectal Toxicity Following Prostate Cancer Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2014, 89, 1024-1031.	0.4	45
23	Nomograms to predict late urinary toxicity after prostate cancer radiotherapy. World Journal of Urology, 2013, 32, 743-51.	1.2	33
24	Interobserver Agreement of Qualitative Analysis and Tumor Delineation of ¹⁸ F-Fluoromisonidazole and 3′-Deoxy-3′- ¹⁸ F-Fluorothymidine PET Images in Lung Cancer. Journal of Nuclear Medicine, 2013, 54, 1543-1550.	2.8	44
25	Predicting lung tumor evolution during radiotherapy from PET images using a patient specific model. , 2013, , .		2
26	Focal HIFU for prostate cancer. Lancet Oncology, The, 2012, 13, e280-e281.	5.1	1
27	Serial assessment of FDG-PET FDG uptake and functional volume during radiotherapy (RT) in patients with non-small cell lung cancer (NSCLC). Radiotherapy and Oncology, 2012, 102, 251-257.	0.3	57
28	70 Gy Versus 80 Gy in Localized Prostate Cancer: 5-Year Results ofÂGETUG 06 Randomized Trial. International Journal of Radiation Oncology Biology Physics, 2011, 80, 1056-1063.	0.4	389
29	In regard to Antonadou et al., IJROBP 2001;51:915. International Journal of Radiation Oncology Biology Physics, 2002, 53, 1395-1396.	0.4	2
30	Altered proliferation and differentiation of human epidermis in cases of skin fibrosis after radiotherapy. International Journal of Radiation Oncology Biology Physics, 2002, 53, 385-393.	0.4	48
31	Comparative analysis of apoptosis measured by Hoechst and flow cytometry in non-Hodgkin's lymphomas. , 1998, 32, 44-50.		24
32	105b Estimation of radiobiological parameters for rodent rectum, human lung and on heterogeneous patient population. Radiotherapy and Oncology, 1996, 40, S29.	0.3	0
33	Ionizing radiation effects on the KG1a primitive hematopoietic cell line. International Journal of Radiation Oncology Biology Physics, 1996, 35, 709-719.	0.4	15
34	Radiobiological and clinical bases for total body irradiation in the leukemias and lymphomas. Seminars in Radiation Oncology, 1995, 5, 301-315.	1.0	27
35	Radiation-induced lung damage after thoracic irradiation for Hodgkin's disease: the role of fractionation. Radiotherapy and Oncology, 1995, 36, 211-217.	0.3	65
36	Single dose versus fractionated total body irradiation before bone marrow transplantation: Radiobiological and clinical considerations. International Journal of Radiation Oncology Biology Physics, 1994, 30, 477-492.	0.4	64

#	Article	IF	CITATIONS
37	Chronic radiation damage in the rat rectum: an analysis of the influences of fractionation, time and volume. Radiotherapy and Oncology, 1994, 33, 41-47.	0.3	54
38	Post-irradiation hyperamylasemia as a biological dosimeter. Radiotherapy and Oncology, 1992, 24, 21-26.	0.3	32
39	La fibrose radique : aspects cliniques. Radioprotection, 1992, 27, 181-182.	0.5	0