Yrjö Roos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2342254/publications.pdf

Version: 2024-02-01

59	4,811	28	60
papers	citations	h-index	g-index
62	62	62	3015
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Formation of dry beads for bioactives encapsulation by freeze granulation. Journal of Food Engineering, 2022, 317, 110847.	2.7	3
2	Bioactives and extracts affect the physico-chemical properties of concentrated whey protein isolate dispersions. Food Production Processing and Nutrition, 2022, 4, .	1.1	1
3	Glass Transition and Re-Crystallization Phenomena of Frozen Materials and Their Effect on Frozen Food Quality. Foods, 2021, 10, 447.	1.9	19
4	Food Engineering Reviews Special Issue based on the 13th International Congress on Engineering and Food – (ICEF 13). Food Engineering Reviews, 2021, 13, 1-2.	3.1	2
5	Encapsulant-bioactives interactions impact on physico-chemical properties of concentrated dispersions. Journal of Food Engineering, 2021, 302, 110586.	2.7	6
6	Effects of Aronia polyphenols on the physico-chemical properties of whey, soy, and pea protein isolate dispersions. Food Production Processing and Nutrition, 2021, 3, .	1.1	3
7	Effects of maltodextrin content in double-layer emulsion for production and storage of spray-dried carotenoid-rich microcapsules. Food and Bioproducts Processing, 2020, 124, 208-221.	1.8	24
8	Thermal gelation and hardening of whey protein beads for subsequent dehydration and encapsulation using vitrifying sugars. Journal of Food Engineering, 2020, 279, 109966.	2.7	6
9	Water and Pathogenic Viruses Inactivationâ€"Food Engineering Perspectives. Food Engineering Reviews, 2020, 12, 251-267.	3.1	26
10	Food engineering and food science and technology: Forward-looking journey to future new horizons. Innovative Food Science and Emerging Technologies, 2018, 47, 326-334.	2.7	14
11	Carotenoids stability in spray dried high solids emulsions using layer-by-layer (LBL) interfacial structure and trehalose-high DE maltodextrin as glass former. Journal of Functional Foods, 2017, 33, 32-39.	1.6	20
12	Glass Transition-Associated Structural Relaxations and Applications of Relaxation Times in Amorphous Food Solids: a Review. Food Engineering Reviews, 2017, 9, 257-270.	3.1	35
13	Water sorption-induced crystallization, structural relaxations and strength analysis of relaxation times in amorphous lactose/whey protein systems. Journal of Food Engineering, 2017, 196, 150-158.	2.7	16
14	Food Engineering at Multiple Scales: Case Studies, Challenges and the Future—A European Perspective. Food Engineering Reviews, 2016, 8, 91-115.	3.1	52
15	Physical properties of maltodextrin DE 10: Water sorption, water plasticization and enthalpy relaxation. Journal of Food Engineering, 2016, 174, 68-74.	2.7	33
16	Carotenoid stability in high total solid spray dried emulsions with gum Arabic layered interface and trehaloseâ€"WPI composites as wall materials. Innovative Food Science and Emerging Technologies, 2016, 34, 310-319.	2.7	29
17	Structural relaxations of amorphous lactose and lactose-whey protein mixtures. Journal of Food Engineering, 2016, 173, 106-115.	2.7	37
18	Spray drying of high hydrophilic solids emulsions with layered interface and trehalose-maltodextrin as glass formers for carotenoids stabilization. Journal of Food Engineering, 2016, 171, 174-184.	2.7	26

#	Article	IF	CITATIONS
19	Quantification of Protein Hydration, Glass Transitions, and Structural Relaxations of Aqueous Protein and Carbohydrate–Protein Systems. Journal of Physical Chemistry B, 2015, 119, 7077-7086.	1.2	20
20	Stability of flocculated particles in concentrated and high hydrophilic solid layer-by-layer (LBL) emulsions formed using whey proteins and gum Arabic. Food Research International, 2015, 74, 160-167.	2.9	22
21	X-ray diffraction analysis of lactose crystallization in freeze-dried lactose–whey protein systems. Food Research International, 2015, 67, 1-11.	2.9	41
22	Protein Modifications in High Protein-Oil and Protein-Oil-Sugar Systems at Low Water Activity. Food Biophysics, 2014, 9, 49-60.	1.4	22
23	Stability and loss kinetics of lutein and \hat{l}^2 -carotene encapsulated in freeze-dried emulsions with layered interface and trehalose as glass former. Food Research International, 2014, 62, 403-409.	2.9	45
24	Double interface formulation for improved αâ€ŧocopherol stabilisation in dehydration of emulsions. Journal of the Science of Food and Agriculture, 2013, 93, 2646-2653.	1.7	6
25	Development and Characterization of Biodegradable Composite Films Based on Gelatin Derived from Beef, Pork and Fish Sources. Foods, 2013, 2, 1-17.	1.9	31
26	Microstructure formation of maltodextrin and sugar matrices in freeze-dried systems. Carbohydrate Polymers, 2012, 88, 734-742.	5.1	66
27	Sugar Crystallization and Glass Transition as Destabilizing Factors of Protein-Stabilized Emulsions. Food Biophysics, 2012, 7, 93-101.	1.4	1
28	Mechanical relaxation times as indicators of stickiness in skim milk–maltodextrin solids systems. Journal of Food Engineering, 2011, 106, 306-317.	2.7	35
29	Solid–Liquid Transitions and Stability of HPKO-in-Water Systems Emulsified by Dairy Proteins. Food Biophysics, 2011, 6, 288-294.	1.4	8
30	Mechanical αâ€relaxations and stickiness of milk solids/maltodextrin systems around glass transition. Journal of the Science of Food and Agriculture, 2011, 91, 2529-2536.	1.7	12
31	Dielectric and Mechanical Properties Around Glass Transition of Milk Powders. Drying Technology, 2010, 28, 1044-1054.	1.7	24
32	Glass Transition Temperature and Its Relevance in Food Processing. Annual Review of Food Science and Technology, 2010, 1, 469-496.	5.1	269
33	Physical State Study of (Sugar Mixture)-Polymer Model Systems. International Journal of Food Properties, 2010, 13, 184-197.	1.3	5
34	Gelatinization and freeze-concentration effects on recrystallization in corn and potato starch gels. Carbohydrate Research, 2008, 343, 903-911.	1.1	37
35	Lipid Encapsulation in Glassy Matrices of Sugar-Gelatin Systems in Freeze-Drying. International Journal of Food Properties, 2008, 11, 363-378.	1.3	10
36	Frozen State Transitions in Freeze-Concentrated Lactose-Protein-Cornstarch Systems. International Journal of Food Properties, 2007, 10, 577-587.	1.3	6

#	Article	IF	CITATIONS
37	Water sorption and time-dependent crystallization behaviour of freeze-dried lactose–salt mixtures. LWT - Food Science and Technology, 2007, 40, 520-528.	2.5	39
38	Glass transition and crystallization behaviour of freeze-dried lactose–salt mixtures. LWT - Food Science and Technology, 2007, 40, 536-543.	2.5	51
39	Limonene encapsulation in freeze-drying of gum Arabic–sucrose–gelatin systems. LWT - Food Science and Technology, 2007, 40, 1381-1391.	2.5	132
40	Casein molecular assembly affects the properties of milk fat emulsions encapsulated in lactose or trehalose matrices. International Dairy Journal, 2007, 17, 683-695.	1.5	29
41	The State of Aggregation of Casein Affects the Storage Stability of Amorphous Sucrose, Lactose, and Their Mixtures. Food Biophysics, 2007, 2, 10-19.	1.4	8
42	State transitions and freeze concentration in trehalose–protein–cornstarch mixtures. LWT - Food Science and Technology, 2006, 39, 930-938.	2.5	18
43	Differences in the physical state and thermal behavior of spray-dried and freeze-dried lactose and lactose/protein mixtures. Innovative Food Science and Emerging Technologies, 2006, 7, 62-73.	2.7	96
44	Isothermal study of nonenzymatic browning kinetics in spray-dried and freeze-dried systems at different relative vapor pressure environments. Innovative Food Science and Emerging Technologies, 2006, 7, 182-194.	2.7	24
45	Solid-state characterization of spray-dried ice cream mixes. Colloids and Surfaces B: Biointerfaces, 2005, 45, 66-75.	2.5	34
46	Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze-drying and storage. Process Biochemistry, 2004, 39, 1081-1086.	1.8	199
47	Glass transition and water plasticization effects on crispness of a snack food extrudate. International Journal of Food Properties, 1998, 1, 163-180.	1.3	59
48	Water sorption isotherms of freezeâ€dried milk products: applicability of linear and nonâ€linear regression analysis in modelling. International Journal of Food Science and Technology, 1997, 32, 459-471.	1.3	19
49	Melting and glass transitions of low molecular weight carbohydrates. Carbohydrate Research, 1993, 238, 39-48.	1.1	553
50	WATER ACTIVITY and PHYSICAL STATE EFFECTS ON AMORPHOUS FOOD STABILITY. Journal of Food Processing and Preservation, 1993, 16, 433-447.	0.9	235
51	Crystallization of Amorphous Lactose. Journal of Food Science, 1992, 57, 775-777.	1.5	228
52	Plasticizing Effect of Water on Thermal Behavior and Crystallization of Amorphous Food Models. Journal of Food Science, 1991, 56, 38-43.	1.5	594
53	Phase Transitions of Amorphous Sucrose and Frozen Sucrose Solutions. Journal of Food Science, 1991, 56, 266-267.	1.5	134
54	Water and Molecular Weight Effects on Glass Transitions in Amorphous Carbohydrates and Carbohydrate Solutions. Journal of Food Science, 1991, 56, 1676-1681.	1.5	379

Yrjö Roos

#	Article	IF	CITATIONS
55	Phase transitions of mixtures of amorphous polysaccharides and sugars. Biotechnology Progress, 1991, 7, 49-53.	1.3	399
56	Effects of Drying Conditions on Water Sorption and Phase Transitions of Freeze-Dried Horseradish Roots. Journal of Food Science, 1990, 55, 206-209.	1.5	31
57	Differential scanning calorimetry study of phase transitions affecting the quality of dehydrated materials. Biotechnology Progress, 1990, 6, 159-163.	1.3	309
58	Effect of Moisture on the Thermal Behavior of Strawberries Studied using Differential Scanning Calorimetry. Journal of Food Science, 1987, 52, 146-149.	1.5	178
59	Phase Transitions and Unfreezable Water Content of Carrots, Reindeer Meat and White Bread Studied using Differential Scanning Calorimetry. Journal of Food Science, 1986, 51, 684-686.	1.5	47