
Shane A Cybart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2342163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superconducting disordered neural networks for neuromorphic processing with fluxons. Science Advances, 2022, 8, eabn4485.	10.3	7
2	Flux focused series arrays of long Josephson junctions for high-dynamic range magnetic field sensing. Journal of Applied Physics, 2022, 131, .	2.5	4
3	Fabrication of Bi\$_{2}\$Sr\$_{2}\$CaCu\$_{2}\$O\$_{8+x}\$ <i>ab</i> -Plane Josephson Junctions by a Focused Helium Ion Beam. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-4.	1.7	4
4	YBa\$_{2}\$Cu\$_{3}\$O\$_{7-delta }\$Single Flux Quantum Flip Flop Directly Written With a Focused Helium Ion Beam. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	4
5	Large-Scale Focused Helium Ion Beam Lithography. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-4.	1.7	2
6	Bromine Etching of Patterned YBa ₂ Cu ₃ O _{6+<i>x</i>} Nanoscale Thin Films for High-Temperature Superconducting Devices. ACS Applied Nano Materials, 2021, 4, 12926-12931.	5.0	0
7	Electronic Feedback System for Superconducting Quantum Interference Devices. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	1
8	Portable Solid Nitrogen Cooling System for High Transition Temperature Superconductive Electronics. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-3.	1.7	2
9	Inductance of YBa\$_{2}\$Cu\$_{3}\$O\$_{7-delta }\$ Thin-Films With and Without Superconducting Ground Planes. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	6
10	Micrometer Scale Y–Ba–Cu–O SQUID Arrays Fabricated With a Focused Helium Ion Beam. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-3.	1.7	2
11	High-transition-temperature nanoscale superconducting quantum interference devices directly written with a focused helium ion beam. Applied Physics Letters, 2020, 116, .	3.3	13
12	YBa <inline-formula> <tex-math notation="LaTeX">\$_2\$</tex-math> </inline-formula> Cu <inline-formula> <tex-math notation="LaTeX">\$_3\$ </tex-math </inline-formula> O <inline-formula> <tex-math notation="LaTeX">\$_{7-delta}\$ </tex-math </inline-formula> -CeO <inline-formula></inline-formula>	1.7	2
13			

SHANE A CYBART

#	Article	IF	CITATIONS
19	Inductance investigation of single layer and multilayer YBa2Cu3O7-Î' thin films grown by reactive coevaporation. , 2019, , .		0
20	Portable Solid Nitrogen Cooling System for High Transition Temperature Superconductive Electronics. , 2019, , .		0
21	Direct-Write Ion Beam Irradiated Josephson Junctions. , 2019, , .		Ο
22	Series arrays of planar long Josephson junctions for high dynamic range magnetic flux detection. AIP Advances, 2019, 9, .	1.3	11
23	Direct-coupled micro-magnetometer with Y-Ba-Cu-O nano-slit SQUID fabricated with a focused helium ion beam. Applied Physics Letters, 2018, 113, 162602.	3.3	33
24	Superconducting nano Josephson junctions patterned with a focused helium ion beam. Applied Physics Letters, 2018, 113, .	3.3	44
25	Do multiple Josephson junctions make better devices?. Superconductor Science and Technology, 2017, 30, 090201.	3.5	8
26	Magnetic effects in sulfur-decorated graphene. Scientific Reports, 2016, 6, 21460.	3.3	11
27	Focused Helium and Neon Ion Beam Modification of High-T C Superconductors and Magnetic Materials. Nanoscience and Technology, 2016, , 415-445.	1.5	5
28	Superconducting Nano Wire Circuits Fabricated using a Focused Helium Beam. Microscopy and Microanalysis, 2015, 21, 1997-1998.	0.4	1
29	Application of Focused Helium Ion Beams for Direct-write Lithography of Superconducting Electronics. Microscopy and Microanalysis, 2015, 21, 2321-2322.	0.4	0
30	YBa2Cu3O7â^' <i>δ</i> superconducting quantum interference devices with metallic to insulating barriers written with a focused helium ion beam. Applied Physics Letters, 2015, 106, .	3.3	45
31	Nano Josephson superconducting tunnel junctions in YBa2Cu3O7–δ directly patterned with a focused helium ion beam. Nature Nanotechnology, 2015, 10, 598-602.	31.5	146
32	Large scale two-dimensional arrays of magnesium diboride superconducting quantum interference devices. Applied Physics Letters, 2014, 104, 182604.	3.3	9
33	Large voltage modulation in magnetic field sensors from two-dimensional arrays of Y-Ba-Cu-O nano Josephson junctions. Applied Physics Letters, 2014, 104, .	3.3	31
34	Comparison of Y–Ba–Cu–O Films Irradiated With Helium and Neon Ions for the Fabricationof Josephson Devices. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.7	10
35	Temporal Stability of Y–Ba–Cu–O Nano Josephson Junctions from Ion Irradiation. IEEE Transactions on Applied Superconductivity, 2013, 23, 1100103-1100103.	1.7	15
36	Simulation of Series Arrays of Superconducting Quantum Interference Devices. IEEE Transactions on Applied Superconductivity, 2013, 23, 1600104-1600104.	1.7	13

SHANE A CYBART

#	Article	IF	CITATIONS
37	Full Electric Control of Exchange Bias. Physical Review Letters, 2013, 110, 067202.	7.8	252
38	Fabrication of Arrays of Nano-Superconducting Quantum Interference Devices Using a Double-Angle Processing Approach. IEEE Transactions on Applied Superconductivity, 2013, 23, 1100604-1100604.	1.7	1
39	Nanometer scale high-aspect-ratio trench etching at controllable angles using ballistic reactive ion etching. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 010604.	1.2	9
40	Comparison of measurements and simulations of series-parallel incommensurate area superconducting quantum interference device arrays fabricated from YBa2Cu3O7â^' <i>δ</i> ion damage Josephson junctions. Journal of Applied Physics, 2012, 112, .	2.5	28
41	Reversible electric control of exchange bias in a multiferroic field-effect device. Nature Materials, 2010, 9, 756-761.	27.5	633
42	Very Large Scale Integration of Nanopatterned YBa ₂ Cu ₃ O _{7â^î} Josephson Junctions in a Two-Dimensional Array. Nano Letters, 2009, 9, 3581-3585.	9.1	48
43	Series array of incommensurate superconducting quantum interference devices from YBa2Cu3O7â^î^ ion damage Josephson junctions. Applied Physics Letters, 2008, 93, 182502.	3.3	37
44	Planar MgB2 Josephson junctions and series arrays via nanolithography and ion damage. Applied Physics Letters, 2006, 88, 012509.	3.3	44
45	Planar MgB2 superconductor-normal metal-superconductor Josephson junctions fabricated using epitaxial MgB2â^•TiB2 bilayers. Applied Physics Letters, 2006, 88, 222511.	3.3	29
46	Fabrication of identical sub-100 nm closely spaced parallel lines using electron beam lithography. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1887.	1.6	2
47	Planar thin film YBa2Cu3O7â^î´Josephson junction pairs and arrays via nanolithography and ion damage. Applied Physics Letters, 2004, 85, 2863-2865.	3.3	35