Zhongmin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2341843/publications.pdf

Version: 2024-02-01

516561 610775 2,129 24 16 24 h-index citations g-index papers 24 24 24 3541 times ranked all docs docs citations citing authors

#	Article	IF	CITATIONS
1	Hydrogen-Bonded Dopant-Free Hole Transport Material Enables Efficient and Stable Inverted Perovskite Solar Cells. CCS Chemistry, 2022, 4, 3084-3094.	4.6	37
2	Harnessing chemical functions of ionic liquids for perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 797-810.	7.1	17
3	Reducing Energy Disorder for Efficient and Stable Snâ^'Pb Alloyed Perovskite Solar Cells Angewandte Chemie, 2022, 134, .	1.6	3
4	Reducing Energy Disorder for Efficient and Stable Snâ^'Pb Alloyed Perovskite Solar Cells Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
5	Effective Surface Passivation via Intermolecular Interactions for Highâ€Performance Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	10
6	Sulfonyl passivation through synergistic hydrogen bonding and coordination interactions for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 13048-13054.	5.2	18
7	Reducing Defects Density and Enhancing Hole Extraction for Efficient Perovskite Solar Cells Enabled by Ï€â€Pb 2+ Interactions. Angewandte Chemie, 2021, 133, 17496-17501.	1.6	6
8	Reducing Defects Density and Enhancing Hole Extraction for Efficient Perovskite Solar Cells Enabled by Ï€â€Pb ²⁺ Interactions. Angewandte Chemie - International Edition, 2021, 60, 17356-17361.	7.2	51
9	The Main Progress of Perovskite Solar Cells in 2020–2021. Nano-Micro Letters, 2021, 13, 152.	14.4	250
10	Recent progress toward highly efficient tinâ€based perovskite (ASnX3) solar cells. Nano Select, 2021, 2, 1023-1054.	1.9	11
11	Highly efficient inverted hole-transport-layer-free perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 503-512.	5.2	43
12	A temperature gradient-induced directional growth of a perovskite film. Journal of Materials Chemistry A, 2020, 8, 17019-17024.	5.2	7
13	Fused Furanâ€Based Organic Small Molecules as Dopantâ€Free Hole Transporting Material for Inverted Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000536.	3.1	8
14	Interaction engineering in organic–inorganic hybrid perovskite solar cells. Materials Horizons, 2020, 7, 2208-2236.	6.4	35
15	Reliable Measurement of Perovskite Solar Cells. Advanced Materials, 2019, 31, e1803231.	11.1	62
16	Organic/Inorganic Hybrid p-Type Semiconductor Doping Affords Hole Transporting Layer Free Thin-Film Perovskite Solar Cells with High Stability. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22603-22611.	4.0	40
17	Disodium Benzodipyrrole Sulfonate as Neutral Hole-Transporting Materials for Perovskite Solar Cells. Journal of the American Chemical Society, 2018, 140, 5018-5022.	6.6	91
18	Ligandâ€Free, Highly Dispersed NiO _x Nanocrystal for Efficient, Stable, Lowâ€Temperature Processable Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800004.	3.1	58

ZHONGMIN

#	Article	IF	CITATION
19	Lewisâ€Adduct Mediated Grainâ€Boundary Functionalization for Efficient Idealâ€Bandgap Perovskite Solar Cells with Superior Stability. Advanced Energy Materials, 2018, 8, 1800997.	10.2	93
20	Thermally Stable MAPbI ₃ Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm ² achieved by Additive Engineering. Advanced Materials, 2017, 29, 1701073.	11.1	541
21	Stable Inverted Planar Perovskite Solar Cells with Lowâ€Temperatureâ€Processed Holeâ€Transport Bilayer. Advanced Energy Materials, 2017, 7, 1700763.	10.2	115
22	The fabrication of formamidinium lead iodide perovskite thin films via organic cation exchange. Chemical Communications, 2016, 52, 3828-3831.	2.2	79
23	Methylamineâ€Gasâ€Induced Defectâ€Healing Behavior of CH ₃ NH ₃ Pbl ₃ Thin Films for Perovskite Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 9705-9709.	7.2	377
24	Interface engineering for high-performance perovskite hybrid solar cells. Journal of Materials Chemistry A, 2015, 3, 19205-19217.	5.2	145