
Sandra Ilona Sünram-Lea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2341822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer's disease and cardiovascular disease. Molecular Psychiatry, 2006, 11, 721-736.	7.9	334
2	Glucose and memory: fractionation of enhancement effects?. Psychopharmacology, 1998, 137, 259-270.	3.1	150
3	Glucose facilitation of cognitive performance in healthy young adults: examination of the influence of fast-duration, time of day and pre-consumption plasma glucose levels. Psychopharmacology, 2001, 157, 46-54.	3.1	118
4	Metabolic Agents that Enhance ATP can Improve Cognitive Functioning: A Review of the Evidence for Glucose, Oxygen, Pyruvate, Creatine, and l-Carnitine. Nutrients, 2011, 3, 735-755.	4.1	111
5	Investigation into the significance of task difficulty and divided allocation of resources on the glucose memory facilitation effect. Psychopharmacology, 2002, 160, 387-397.	3.1	104
6	The effect of retrograde and anterograde glucose administration on memory performance in healthy young adults. Behavioural Brain Research, 2002, 134, 505-516.	2.2	77
7	The Hippocampus and Delayed Recall: Bigger is not Necessarily Better?. Memory, 1999, 7, 715-733.	1.7	64
8	Glucose administration prior to a divided attention task improves tracking performance but not word recognition: evidence against differential memory enhancement?. Psychopharmacology, 2009, 202, 549-558.	3.1	54
9	The effects of exposure to an acute naturalistic stressor on working memory, state anxiety and salivary cortisol concentrations. Stress, 2008, 11, 115-124.	1.8	53
10	The effect of glucose dose and fasting interval on cognitive function: a double-blind, placebo-controlled, six-way crossover study. Psychopharmacology, 2012, 220, 577-589.	3.1	44
11	Stress Reactivity and Cognitive Performance in a Simulated Firefighting Emergency. Aviation, Space, and Environmental Medicine, 2013, 84, 592-599.	0.5	43
12	Acute ingestion of different macronutrients differentially enhances aspects of memory and attention in healthy young adults. Biological Psychology, 2012, 89, 477-486.	2.2	42
13	Sugar rush or sugar crash? A meta-analysis of carbohydrate effects on mood. Neuroscience and Biobehavioral Reviews, 2019, 101, 45-67.	6.1	42
14	Dose–response investigation into glucose facilitation of memory performance and mood in healthy young adults. Journal of Psychopharmacology, 2011, 25, 1076-1087.	4.0	35
15	The impact of diet-based glycaemic response and glucose regulation on cognition: evidence across the lifespan. Proceedings of the Nutrition Society, 2017, 76, 466-477.	1.0	33
16	The effect of glucose administration on the recollection and familiarity components of recognition memory. Biological Psychology, 2008, 77, 69-75.	2.2	31
17	P3b versus P3a: an event-related potential investigation of the glucose facilitation effect. Journal of Psychopharmacology, 2008, 22, 486-492.	4.0	31
18	The effect of energy drinks on cortisol levels, cognition and mood during a fire-fighting exercise. Psychopharmacology, 2012, 219, 83-97.	3.1	31

#	Article	IF	CITATIONS
19	Glucose modulates event-related potential components of recollection and familiarity in healthy adolescents. Psychopharmacology, 2009, 205, 11-20.	3.1	29
20	Glucose administration and cognitive function: differential effects of age and effort during a dual task paradigm in younger and older adults. Psychopharmacology, 2015, 232, 1135-1142.	3.1	28
21	The Influence of Fat Co-administration on the Glucose Memory Facilitation Effect. Nutritional Neuroscience, 2004, 7, 21-32.	3.1	26
22	Response variability to glucose facilitation of cognitive enhancement. British Journal of Nutrition, 2013, 110, 1873-1884.	2.3	22
23	The effect of glucose administration on the emotional enhancement effect in recognition memory. Biological Psychology, 2006, 73, 199-208.	2.2	18
24	Glucose effects on long-term memory performance: duration and domain specificity. Psychopharmacology, 2010, 211, 131-140.	3.1	17
25	Glucose enhancement of recognition memory: Differential effects on effortful processing but not aspects of â€~remember-know' responses. Neuropharmacology, 2013, 64, 544-549.	4.1	16
26	Evaluation of Treatment Descriptions and Alignment With Clinical Guidance of Apps for Depression on App Stores: Systematic Search and Content Analysis. JMIR Formative Research, 2020, 4, e14988.	1.4	16
27	Glucose enhancement of memory depends on initial thirst. Appetite, 2009, 53, 426-429.	3.7	12
28	The effects of glucose dose and dual-task performance on memory for emotional materialâ~†. Behavioural Brain Research, 2010, 211, 83-88.	2.2	11
29	The Role of Motivation, Glucose and Self-Control in the Antisaccade Task. PLoS ONE, 2015, 10, e0122218.	2.5	9
30	A temporary deficiency in self ontrol: Can heightened motivation overcome this effect?. Psychophysiology, 2017, 54, 773-779.	2.4	4
31	Breakfast, Glycemic Index, and Cognitive Function in School Children: Evidence, Methods, and Mechanisms. Nestle Nutrition Institute Workshop Series, 2019, 91, 169-178.	0.1	2
32	Assessment of Glycemic Response to Model Breakfasts Varying in Glycemic Index (GI) in 5–7-Year-Old School Children. Nutrients, 2021, 13, 4246.	4.1	1