Alain Hauchecorne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2341198/publications.pdf

Version: 2024-02-01

268 papers 8,991 citations

47004 47 h-index 79 g-index

332 all docs 332 docs citations

times ranked

332

4352 citing authors

#	Article	IF	Citations
1	Density and temperature profiles obtained by lidar between 35 and 70 km. Geophysical Research Letters, 1980, 7, 565-568.	4.0	397
2	The OSIRIS instrument on the Odin spacecraft. Canadian Journal of Physics, 2004, 82, 411-422.	1.1	349
3	Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	303
4	Complex organic matter in Titan's atmospheric aerosols from in situ pyrolysis and analysis. Nature, 2005, 438, 796-799.	27.8	228
5	A Doppler lidar for measuring winds in the middle atmosphere. Geophysical Research Letters, 1989, 16, 1273-1276.	4.0	194
6	Climatology and trends of the middle atmospheric temperature (33–87 km) as seen by Rayleigh lidar over the south of France. Journal of Geophysical Research, 1991, 96, 15297-15309.	3.3	171
7	Mesospheric temperature inversion and gravity wave breaking. Geophysical Research Letters, 1987, 14, 933-936.	4.0	170
8	A warm layer in Venus' cryosphere and high-altitude measurements of HF, HCl, H2O and HDO. Nature, 2007, 450, 646-649.	27.8	161
9	SPICAV on Venus Express: Three spectrometers to study the global structure and composition of the Venus atmosphere. Planetary and Space Science, 2007, 55, 1673-1700.	1.7	160
10	Lidar observation of gravity and tidal waves in the stratosphere and mesosphere. Journal of Geophysical Research, 1981, 86, 9715-9721.	3.3	149
11	Gravity waves in the middle atmosphere observed by Rayleigh lidar: 2. Climatology. Journal of Geophysical Research, 1991, 96, 5169-5183.	3.3	144
12	GOMOS on Envisat: an overview. Advances in Space Research, 2004, 33, 1020-1028.	2.6	142
13	Solar proton events of October–November 2003: Ozone depletion in the Northern Hemisphere polar winter as seen by GOMOS/Envisat. Geophysical Research Letters, 2004, 31, .	4.0	141
14	Midlatitude long-term variability of the middle atmosphere: Trends and cyclic and episodic changes. Journal of Geophysical Research, 1995, 100, 18887.	3.3	123
15	Quantification of the transport of chemical constituents from the polar vortex to midlatitudes in the lower stratosphere using the high-resolution advection model MIMOSA and effective diffusivity. Journal of Geophysical Research, 2002, 107, SOL 32-1.	3.3	121
16	Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31, 90-101.	6.3	118
17	Global ozone monitoring by occultation of stars: an overview of GOMOS measurements on ENVISAT. Atmospheric Chemistry and Physics, 2010, 10, 12091-12148.	4.9	102
18	VEGA 1 and VEGA 2 entry probes: An investigation of local UV absorption (220-400 nm) in the atmosphere of Venus (SO2aerosols, cloud structure). Journal of Geophysical Research, 1996, 101, 12709-12745.	3.3	100

#	Article	lF	Citations
19	Rayleigh–Mie Doppler wind lidar for atmospheric measurements I Instrumental setup, validation, and first climatological results. Applied Optics, 1999, 38, 2410.	2.1	95
20	Ozone and temperature trends in the upper stratosphere at five stations of the Network for the Detection of Atmospheric Composition Change. International Journal of Remote Sensing, 2009, 30, 3875-3886.	2.9	94
21	A Critical Review of the Database Acquired for the Long-Term Surveillance of the Middle Atmosphere by the French Rayleigh Lidars. Journal of Atmospheric and Oceanic Technology, 1993, 10, 850-867.	1.3	90
22	Stratospheric Smoke With Unprecedentedly High Backscatter Observed by Lidars Above Southern France. Geophysical Research Letters, 2018, 45, 1639-1646.	4.0	90
23	Gravity waves in the middle atmosphere observed by Rayleigh lidar: 1. Case studies. Journal of Geophysical Research, 1991, 96, 5153-5167.	3.3	89
24	Comparison of coâ€located independent groundâ€based middle atmospheric wind and temperature measurements with numerical weather prediction models. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8318-8331.	3.3	85
25	Cirrus climatological results from lidar measurements at OHP (44°N, 6°E). Geophysical Research Letters, 2001, 28, 1687-1690.	4.0	83
26	Temperature climatology of the middle atmosphere from long-term lidar measurements at middle and low latitudes. Journal of Geophysical Research, 1998, 103, 17191-17204.	3.3	81
27	Review of ozone and temperature lidar validations performed within the framework of the Network for the Detection of Stratospheric Change. Journal of Environmental Monitoring, 2004, 6, 721.	2.1	80
28	Recent observations of mesospheric temperature inversions. Journal of Geophysical Research, 1997, 102, 19471-19482.	3.3	78
29	Methodology for the independent calibration of Raman backscatter water-vapor lidar systems. Applied Optics, 1999, 38, 5816.	2.1	77
30	${ m Ma ilde{A}^-}$ do observatory: a new high-altitude station facility at Reunion Island (21 ${ m \^{A}^o}$ S, 55 ${ m \^{A}^o}$ E) for long-term atmospheric remote sensing and in situ measurements. Atmospheric Measurement Techniques, 2013, 6, 2865-2877.	3.1	74
31	Evaluation of optimization of lidar temperature analysis algorithms using simulated data. Journal of Geophysical Research, 1998, 103, 6177-6187.	3.3	72
32	The 11-year solar-cycle effects on the temperature in the upper-stratosphere and mesosphere: Part lâ€"Assessment of observations. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67, 940-947.	1.6	72
33	Retrieval of atmospheric parameters from GOMOS data. Atmospheric Chemistry and Physics, 2010, 10, 11881-11903.	4.9	71
34	Stratosphere temperature measurement using Raman lidar. Applied Optics, 1990, 29, 5182.	2.1	67
35	Evaluation of NMC Upper-Stratospheric Temperature Analyses Using Rocketsonde and Lidar Data. Bulletin of the American Meteorological Society, 1993, 74, 789-799.	3.3	67
36	First results on GOMOS/ENVISAT. Advances in Space Research, 2004, 33, 1029-1035.	2.6	66

3

#	Article	IF	CITATIONS
37	Large increase of NO2in the north polar mesosphere in January–February 2004: Evidence of a dynamical origin from GOMOS/ENVISAT and SABER/TIMED data. Geophysical Research Letters, 2007, 34, .	4.0	66
38	SOLAR-ISS: A new reference spectrum based on SOLAR/SOLSPEC observations. Astronomy and Astrophysics, 2018, 611, A1.	5.1	66
39	Validation of UARS Microwave Limb Sounder temperature and pressure measurements. Journal of Geophysical Research, 1996, 101, 9983-10016.	3.3	61
40	The study of the martian atmosphere from top to bottom with SPICAM light on mars express. Planetary and Space Science, 2000, 48, 1303-1320.	1.7	61
41	Stratospheric and mesospheric cooling trend estimates from u.s. rocketsondes at low latitude stations (8°S–34°N), taking into account instrumental changes and natural variability. Journal of Atmospheric and Solar-Terrestrial Physics, 1999, 61, 447-459.	1.6	60
42	Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapor. Applied Optics, 1999, 38, 5838.	2.1	60
43	Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves. Journal of Geophysical Research E: Planets, 2016, 121, 1087-1101.	3.6	60
44	Validation of temperature measurements from the Halogen Occultation Experiment. Journal of Geophysical Research, 1996, 101, 10277-10285.	3.3	59
45	Longitudinal structure in atomic oxygen concentrations observed with WINDII on UARS. Geophysical Research Letters, 1993, 20, 1303-1306.	4.0	57
46	Nighttime ozone profiles in the stratosphere and mesosphere by the Global Ozone Monitoring by Occultation of Stars on Envisat. Journal of Geophysical Research, 2006, 111 , .	3.3	55
47	GOMOS O ₃ , NO ₂ , and NO ₃ observations in 2002–2008. Atmospheric Chemistry and Physics, 2010, 10, 7723-7738.	4.9	55
48	Variability and evolution of the midlatitude stratospheric aerosol budget from 22 years of ground-based lidar and satellite observations. Atmospheric Chemistry and Physics, 2017, 17, 1829-1845.	4.9	55
49	Semidiurnal and diurnal temperature tides (30-55 km): Climatology and effect on UARS-LIDAR data comparisons. Journal of Geophysical Research, 1996, 101, 10299-10310.	3.3	52
50	Harmonized dataset of ozone profiles from satellite limb and occultation measurements. Earth System Science Data, 2013, 5, 349-363.	9.9	52
51	First simultaneous global measurements of nighttime stratospheric NO2and NO3observed by Global Ozone Monitoring by Occultation of Stars (GOMOS)/Envisat in 2003. Journal of Geophysical Research, 2005, 110, .	3.3	50
52	Accuracy and precision of cryogenic limb array etalon spectrometer (CLAES) temperature retrievals. Journal of Geophysical Research, 1996, 101, 9583-9601.	3.3	49
53	Mid″atitude lidar observations of planetary waves in the middle atmosphere during the winter of 1981–1982. Journal of Geophysical Research, 1983, 88, 3843-3849.	3.3	47
54	Semidiurnal and diurnal tidal effects in the middle atmosphere as seen by Rayleigh lidar. Journal of Geophysical Research, 1991, 96, 7579-7587.	3.3	47

#	Article	IF	CITATIONS
55	Intercomparison of density and temperature profiles obtained by lidar, ionization gauges, falling spheres, datasondes and radiosondes during the DYANA campaign. Journal of Atmospheric and Solar-Terrestrial Physics, 1994, 56, 1969-1984.	0.9	47
56	Toward an Improved Representation of Middle Atmospheric Dynamics Thanks to the ARISE Project. Surveys in Geophysics, 2018, 39, 171-225.	4.6	47
57	Investigations on long-term temperature changes in the upper stratosphere using lidar data and NCEP analyses. Journal of Geophysical Research, 2001, 106, 7937-7944.	3.3	46
58	LIDAR monitoring of the temperature in the middle and lower atmosphere. Applied Physics B, Photophysics and Laser Chemistry, 1992, 55, 29-34.	1.5	45
59	Gravity wave spectra in the middle atmosphere as observed by Rayleigh lidar. Geophysical Research Letters, 1990, 17, 1585-1588.	4.0	43
60	Stratospheric temperature measurements by two collocated NDSC lidars during UARS validation campaign. Journal of Geophysical Research, 1996, 101, 10287-10297.	3.3	43
61	GOMOS data characterisation and error estimation. Atmospheric Chemistry and Physics, 2010, 10, 9505-9519.	4.9	43
62	A $2\hat{a} \in d$ dynamical model of mesospheric temperature inversions in winter. Geophysical Research Letters, 1990, 17, 2197-2200.	4.0	41
63	Solstitial Temperature Inversions in the Martian Middle Atmosphere: Observational Clues and 2-D Modeling. Icarus, 1993, 105, 512-528.	2.5	41
64	Vertical structure of the midlatitude temperature from stratosphere to mesopause (30-105 km). Geophysical Research Letters, 1995, 22, 377-380.	4.0	41
65	Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results. Atmospheric Measurement Techniques, 2011, 4, 2579-2605.	3.1	41
66	Long period/large scale oscillations of temperature during the DYANA campaign. Journal of Atmospheric and Solar-Terrestrial Physics, 1994, 56, 1675-1700.	0.9	39
67	Longâ€term variation of the temperature of the middle atmosphere at midâ€latitude: dynamical and radiative causes. Journal of Geophysical Research, 1987, 92, 10933-10941.	3.3	38
68	Mesospheric inversions and their relationship to planetary wave structure. Journal of Geophysical Research, 2002, 107, ACL 4-1.	3.3	38
69	A global climatology of the mesospheric sodium layer from GOMOS data during the 2002–2008 period. Atmospheric Chemistry and Physics, 2010, 10, 9225-9236.	4.9	35
70	Vertical distribution of gravity wave potential energy from longâ€term Rayleigh lidar data at a northern middleâ€latitude site. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,069.	3.3	35
71	Rayleigh lidar observation of a warm stratopause over a tropical site, Gadanki (13.5° N; 79.2° E). Atmospheric Chemistry and Physics, 2004, 4, 1989-1996.	4.9	34
72	Examination of the 2002 major warming in the southern hemisphere using ground-based and Odin/SMR assimilated data: stratospheric ozone distributions and tropic/mid-latitude exchange. Canadian Journal of Physics, 2007, 85, 1287-1300.	1.1	34

#	Article	IF	CITATIONS
73	An evaluation of uncertainties in monitoring middle atmosphere temperatures with the ground-based lidar network in support of space observations. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 627-642.	1.6	34
74	Influence of scintillation on quality of ozone monitoring by GOMOS. Atmospheric Chemistry and Physics, 2009, 9, 9197-9207.	4.9	33
75	Picard SODISM, a Space Telescope to Study the Sun from the Middle Ultraviolet to the Near Infrared. Solar Physics, 2014, 289, 1043-1076.	2.5	33
76	The use of the 1.27 µm O ₂ absorption band for greenhouse gas monitoring from space and application to MicroCarb. Atmospheric Measurement Techniques, 2020, 13, 3329-3374.	3.1	33
77	Forecast and simulation of stratospheric ozone filaments: A validation of a high-resolution potential vorticity advection model by airborne ozone lidar measurements in winter 1998/1999. Journal of Geophysical Research, 2001, 106, 20011-20024.	3.3	32
78	Coherence of long-term stratospheric ozone vertical distribution time series used for the study of ozone recovery at a northern mid-latitude station. Atmospheric Chemistry and Physics, 2011, 11, 4957-4975.	4.9	32
79	Seasonal variation of gravity wave activity at midlatitudes from 7 years of COSMIC GPS and Rayleigh lidar temperature observations. Geophysical Research Letters, 2015, 42, 1251-1258.	4.0	32
80	Mesospheric temperature inversions as seen by ISAMS in December 1991. Geophysical Research Letters, 1995, 22, 1485-1488.	4.0	31
81	Influence of polar ozone loss on northern midlatitude regions estimated by a high-resolution chemistry transport model during winter 1999/2000. Journal of Geophysical Research, 2003, 108, .	3.3	31
82	Indications of thin cirrus clouds in the stratosphere at mid-latitudes. Atmospheric Chemistry and Physics, 2005, 5, 3407-3414.	4.9	31
83	Polar vortex evolution during the 2002 Antarctic major warming as observed by the Odin satellite. Journal of Geophysical Research, 2005, 110, .	3.3	31
84	Optical extinction by upper tropospheric/stratospheric aerosols and clouds: GOMOS observations for the period 2002–2008. Atmospheric Chemistry and Physics, 2010, 10, 7997-8009.	4.9	31
85	Comparison of stratospheric temperatures from several lidars, using National Meteorological Center and microwave limb sounder data as transfer references. Journal of Geophysical Research, 1995, 100, 11105.	3.3	30
86	Title is missing!. Journal of Atmospheric Chemistry, 2002, 43, 175-194.	3.2	30
87	On the vertical structure of the stratosphere at midlatitudes during the first stage of the polar vortex formation and in the polar region in the presence of a large mesospheric descent. Journal of Geophysical Research, 2006, 111 , .	3.3	30
88	Mesospheric temperature from UARS MLS: retrieval and validation. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65, 245-267.	1.6	29
89	Validation of the self-consistency of GOMOS NO3, NO2and O3data using chemical data assimilation. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	29
90	Spatio-temporal observations of the tertiary ozone maximum. Atmospheric Chemistry and Physics, 2009, 9, 4439-4445.	4.9	29

#	Article	IF	CITATIONS
91	Multiple symptoms of total ozone recovery inside the Antarctic vortex during austral spring. Atmospheric Chemistry and Physics, 2018, 18, 7557-7572.	4.9	29
92	Contribution of stratospheric warmings to temperature trends in the middle atmosphere from the lidar series obtained at Hauteâ€Provence Observatory (44°N). Journal of Geophysical Research, 2012, 117, .	3.3	28
93	An unusual stratospheric ozone decrease in the Southern Hemisphere subtropics linked to isentropic air-mass transport as observed over Irene $(25.5 \hat{A}^{\circ} \text{ S}, 28.1 \hat{A}^{\circ} \text{ E})$ in mid-May 2002. Atmospheric Chemistry and Physics, 2006, 6, 1927-1936.	4.9	27
94	Fineâ€scale study of a thick stratospheric ozone lamina at the edge of the southern subtropical barrier. Journal of Geophysical Research, 2003, 108, .	3.3	26
95	Global measurement of the mesospheric sodium layer by the star occultation instrument GOMOS. Geophysical Research Letters, 2004, 31, .	4.0	26
96	Cirrus Classification at Midlatitude from Systematic Lidar Observations. Journal of Applied Meteorology and Climatology, 2006, 45, 249-258.	1.5	26
97	Response of tropical stratospheric O ₃ , NO ₂ and NO ₃ to the equatorial Quasi-Biennial Oscillation and to temperature as seen from GOMOS/ENVISAT. Atmospheric Chemistry and Physics. 2010. 10. 8873-8879.	4.9	26
98	Evidence for long-lived polar vortex air in the mid-latitude summer stratosphere from in situ laser diode CH ₄ and H ₂ O measurements. Atmospheric Chemistry and Physics, 2005, 5, 1467-1472.	4.9	25
99	Impact of Antarctic polar vortex occurrences on total ozone and UVB radiation at southern Argentinean and Antarctic stations during 1997–2003 period. Journal of Geophysical Research, 2005, 110, .	3.3	25
100	Seasonal oscillations of middle atmosphere temperature observed by Rayleigh lidars and their comparisons with TIMED/SABER observations. Journal of Geophysical Research, 2009, 114, .	3.3	25
101	Characteristics of stratospheric warming events during Northern winter. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5368-5380.	3.3	25
102	LIDAR observations of lower stratospheric aerosols over South Africa linked to large scale transport across the southern subtropical barrier. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65, 707-715.	1.6	23
103	Model Simulations of the Impact of the 2002 Antarctic Ozone Hole on the Midlatitudes. Journals of the Atmospheric Sciences, 2005, 62, 871-884.	1.7	23
104	Global analysis of scintillation variance: Indication of gravity wave breaking in the polar winter upper stratosphere. Geophysical Research Letters, 2007, 34, .	4.0	23
105	Dynamical amplification of the stratospheric solar response simulated with the Chemistry-Climate Model LMDz-Reprobus. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 75-76, 147-160.	1.6	22
106	Impact of land convection on temperature diurnal variation in the tropical lower stratosphere inferred from COSMIC GPS radio occultations. Atmospheric Chemistry and Physics, 2013, 13, 6391-6402.	4.9	22
107	A mid-latitude ground-based lidar study of stratospheric warmings and planetary wave propagation. Journal of Atmospheric and Solar-Terrestrial Physics, 1982, 44, 577-583.	0.9	21
108	Postmillennium changes in stratospheric temperature consistently resolved by GPS radio occultation and AMSU observations. Geophysical Research Letters, 2017, 44, 7510-7518.	4.0	21

#	Article	IF	CITATIONS
109	Retrievals from GOMOS stellar occultation measurements using characterization of modeling errors. Atmospheric Measurement Techniques, 2010, 3, 1019-1027.	3.1	21
110	Influence of Arctic polar ozone depletion on lower stratospheric ozone amounts at Haute-Provence Observatory (43.92°N, 5.71°E). Journal of Geophysical Research, 2002, 107, SOL 14-1.	3.3	20
111	Evidence of tidal perturbations in the middle atmosphere over Southern Tropics as deduced from LIDAR data analyses. Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64, 1979-1988.	1.6	20
112	A 2003 stratospheric aerosol extinction and PSC climatology from GOMOS measurements on Envisat. Atmospheric Chemistry and Physics, 2005, 5, 2413-2417.	4.9	20
113	Comparison of polar ozone loss rates simulated by one-dimensional and three-dimensional models with Match observations in recent Antarctic and Arctic winters. Journal of Geophysical Research, 2007, 112, .	3.3	20
114	The Plate Scale of the SODISM Instrument and the Determination of the Solar Radius at 607.1 nm. Solar Physics, 2014, 289, 1-10.	2.5	20
115	Lidar temperature series in the middle atmosphere as a reference data set – Part 1: Improved retrievals and a 20-year cross-validation of two co-located French lidars. Atmospheric Measurement Techniques, 2018, 11, 5531-5547.	3.1	20
116	Variability of mesospheric CO in the fall and winter as observed with ground-based microwave radiometry at 115 GHz. Journal of Geophysical Research, 1995, 100, 14125.	3.3	19
117	Effect of periodic horizontal gradients on the retrieval of atmospheric profiles from occultation measurements. Radio Science, 1997, 32, 469-478.	1.6	19
118	Assimilation of Odin/SMR O3and N2O measurements in a three-dimensional chemistry transport model. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	19
119	The effect of the 11-year solar-cycle on the temperature in the upper-stratosphere and mesosphere: Part II numerical simulations and the role of planetary waves. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67, 948-958.	1.6	19
120	High resolution simulation of recent Arctic and Antarctic stratospheric chemical ozone loss compared to observations. Journal of Atmospheric Chemistry, 2006, 55, 205-226.	3.2	19
121	Evaluation of balloon and satellite water vapour measurements in the Southern tropical and subtropical UTLS during the HIBISCUS campaign. Atmospheric Chemistry and Physics, 2009, 9, 5299-5319.	4.9	19
122	Variability in Antarctic ozone loss in the last decade (2004–2013): high-resolution simulations compared to Aura MLS observations. Atmospheric Chemistry and Physics, 2015, 15, 10385-10397.	4.9	19
123	Remoteâ€sensing measurements in the polar vortex: Comparison to in situ observations and implications for the simultaneous retrievals and analysis of the NO ₂ and OCIO species. Journal of Geophysical Research, 2007, 112, .	3.3	18
124	First climatology of polar mesospheric clouds from GOMOS/ENVISAT stellar occultation instrument. Atmospheric Chemistry and Physics, 2010, 10, 2723-2735.	4.9	18
125	An overview of the HIBISCUS campaign. Atmospheric Chemistry and Physics, 2011, 11, 2309-2339.	4.9	18
126	Doppler lidar at Observatoire de Haute-Provence for wind profiling up to 75 km altitude: performance evaluation and observations. Atmospheric Measurement Techniques, 2020, 13, 1501-1516.	3.1	18

#	Article	IF	CITATIONS
127	Investigation of the tidal variations in a 3-D dynamics-chemistry-transport model of the middle atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66, 251-265.	1.6	17
128	A global OCIO stratospheric layer discovered in GOMOS stellar occultation measurements. Geophysical Research Letters, 2006, 33, .	4.0	17
129	ON THE CONSTANCY OF THE DIAMETER OF THE SUN DURING THE RISING PHASE OF SOLAR CYCLE 24. Astrophysical Journal, 2015, 808, 4.	4.5	17
130	Regional and seasonal stratospheric temperature trends in the last decade (2002–2014) from AMSU observations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8172-8185.	3.3	17
131	Middle Atmosphere Variability and Model Uncertainties as Investigated in the Framework of the ARISE Project., 2019,, 845-887.		17
132	Gravity-wave activity and its relation with prevailing winds during DYANA. Journal of Atmospheric and Solar-Terrestrial Physics, 1994, 56, 1765-1778.	0.9	16
133	Data assimilation of stratospheric ozone using a high-resolution transport model. Geophysical Research Letters, 2002, 29, 19-1-19-4.	4.0	16
134	Crossâ€validation of Advanced Microwave Sounding Unit and lidar for longâ€term upperâ€stratospheric temperature monitoring. Journal of Geophysical Research, 2008, 113, .	3.3	16
135	Measurements of gravity wave activity in the lower stratosphere by Doppler lidar. Journal of Geophysical Research, 2001, 106, 7879-7890.	3.3	15
136	Methodological uncertainties in multi-regression analyses of middle-atmospheric data series. Journal of Environmental Monitoring, 2006, 8, 682.	2.1	15
137	Simultaneous measurements of OClO, NO ₂ and O ₃ in the Arctic polar vortex by the GOMOS instrument. Atmospheric Chemistry and Physics, 2009, 9, 7857-7866.	4.9	15
138	Middle atmosphere temperature trend and solar cycle revealed by long-term Rayleigh lidar observations. Journal of Geophysical Research, 2011, 116, .	3.3	15
139	Analysis of a rapid increase of stratospheric ozone during late austral summer 2008 over Kerguelen (49.4° S, 70.3° E). Atmospheric Chemistry and Physics, 2011, 11, 363-373.	4.9	15
140	SOLAR RADIUS DETERMINATION FROM SODISM/PICARD AND HMI/ <i>SDO</i> DECREASE OF THE SPECTRAL SOLAR RADIANCE DURING THE 2012 JUNE VENUS TRANSIT. Astrophysical Journal, 2014, 783, 127.	4.5	15
141	Water vapor observations up to the lower stratosphere through the Raman lidar during the Ma $ ilde{A}^-$ do Lidar Calibration Campaign. Atmospheric Measurement Techniques, 2015, 8, 1425-1445.	3.1	15
142	Solar Irradiance from 165 to 400 nm in 2008 and UV Variations in Three Spectral Bands During Solar Cycle 24. Solar Physics, 2016, 291, 3527-3547.	2.5	15
143	Complex organic matter in Titan's aerosols? (Reply). Nature, 2006, 444, E6-E7.	27.8	14
144	Temperature trends in the middle atmosphere as seen by historical Russian rocket launches: Part 1, Volgograd (48.68°N, 44.35°E). Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 1075-1086.	1.6	14

#	Article	IF	Citations
145	Temperature retrieval from stratospheric O ₃ and NO ₃ GOMOS data. Geophysical Research Letters, 2007, 34, .	4.0	14
146	On the Determination and Constancy of the Solar Oblateness. Solar Physics, 2015, 290, 673-687.	2.5	14
147	WIRA-C: a compact 142-GHz-radiometer for continuous middle-atmospheric wind measurements. Atmospheric Measurement Techniques, 2018, 11, 5007-5024.	3.1	14
148	UVSQ-SAT, a Pathfinder CubeSat Mission for Observing Essential Climate Variables. Remote Sensing, 2020, 12, 92.	4.0	14
149	Recent lidar developments to monitor stratosphereâ€"troposphere exchange. Journal of Atmospheric and Solar-Terrestrial Physics, 1994, 56, 1073-1081.	0.9	13
150	Analysis of gravity waves in the tropical middle atmosphere over La Reunion Island (21°S, 55°E) with lidar using wavelet techniques. Annales Geophysicae, 2000, 18, 485-498.	1.6	13
151	The effect of the 11-year solar-cycle on the temperature in the upper-stratosphere and mesosphereâ€"Part III: Investigations of zonal asymmetry. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 1591-1599.	1.6	13
152	Mid-latitude ozone monitoring with the GOMOS-ENVISAT experiment version 5: the noise issue. Atmospheric Chemistry and Physics, 2010, 10, 11839-11849.	4.9	13
153	Isentropic modeling of a cirrus cloud event observed in the midlatitude upper troposphere and lower stratosphere. Journal of Geophysical Research, 2010, 115 , .	3.3	13
154	Tidal effects on stratospheric temperature series derived from successive advanced microwave sounding units. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 477-483.	2.7	13
155	Convective gravity wave propagation and breaking in the stratosphere: comparison between WRF model simulations and lidar data. Annales Geophysicae, 2015, 33, 1155-1171.	1.6	13
156	Introduction to the Ma \tilde{A}^- do Lidar Calibration Campaign dedicated to the validation of upper air meteorological parameters. Journal of Applied Remote Sensing, 2015, 9, 094099.	1.3	13
157	Large scale coherence of the mesospheric and upper stratospheric temperature fluctuations. Journal of Atmospheric and Solar-Terrestrial Physics, 1987, 49, 649-654.	0.9	12
158	1. Spatial and temporal evolution of the optical thickness of the Pinatubo aerosol cloud in the northern hemisphere from a network of shipâ€borne and stationary lidars. Geophysical Research Letters, 1993, 20, 1963-1966.	4.0	12
159	The Space Weather and Ultraviolet Solar Variability (SWUSV) Microsatellite Mission. Journal of Advanced Research, 2013, 4, 235-251.	9.5	12
160	Validation of GOMOS ozone precision estimates in the stratosphere. Atmospheric Measurement Techniques, 2014, 7, 2147-2158.	3.1	12
161	A New Solar Spectrum from 656 to 3088 nm. Solar Physics, 2017, 292, 1.	2.5	12
162	Using a network of temperature lidars to identify temperature biases in the upper stratosphere in ECMWF reanalyses. Atmospheric Chemistry and Physics, 2021, 21, 6079-6092.	4.9	12

#	Article	IF	CITATIONS
163	The UVSQ-SAT/INSPIRESat-5 CubeSat Mission: First In-Orbit Measurements of the Earth's Outgoing Radiation. Remote Sensing, 2021, 13, 1449.	4.0	12
164	The mechanism of formation of inversion layers in the mesosphere. Advances in Space Research, 1992, 12, 219-223.	2.6	11
165	Observation of Polar Stratospheric Clouds down to the Mediterranean coast. Atmospheric Chemistry and Physics, 2007, 7, 5275-5281.	4.9	11
166	Measuring Venus' winds using the Absolute Astronomical Accelerometer: Solid super-rotation model of Venus' clouds. Planetary and Space Science, 2008, 56, 1454-1466.	1.7	11
167	Climatology and comparison of ozone from ENVISAT/GOMOS and SHADOZ/balloon-sonde observations in the southern tropics. Atmospheric Chemistry and Physics, 2010, 10, 8025-8035.	4.9	11
168	Frozen-in anticyclones occurring in polar Northern Hemisphere during springtime: Characterization, occurrence and link with quasi-biennial oscillation. Journal of Geophysical Research, 2011, 116, .	3.3	11
169	Lidar temperature series in the middle atmosphere as a reference data set – PartÂ2: Assessment of temperature observations from MLS/Aura and SABER/TIMED satellites. Atmospheric Measurement Techniques, 2018, 11, 6703-6717.	3.1	11
170	Solar radius determined from PICARD/SODISM observations and extremely weak wavelength dependence in the visible and the near-infrared. Astronomy and Astrophysics, 2018, 616, A64.	5.1	11
171	A New Version of the SOLAR-ISS Spectrum Covering the 165 – 3000 nm Spectral Region. Solar Physics 2020, 295, 1.	⁵ ,2.5	11
172	Tentative detection of clear-air turbulence using a ground-based Rayleigh lidar. Applied Optics, 2016, 55, 3420.	2.1	11
173	2. Morphology and dynamics of the Pinatubo aerosol layer in the northern hemisphere as detected from a shipâ€borne lidar. Geophysical Research Letters, 1993, 20, 1967-1970.	4.0	10
174	Retrieval of ozone profiles from GOMOS limb scattered measurements. Atmospheric Measurement Techniques, 2011, 4, 659-667.	3.1	10
175	Stratosphere NO y Species Measured by MIPAS and GOMOS Onboard ENVISAT During 2002–2010: Influence of Plasma Processes onto the Observed Distribution and Variability. Space Science Reviews, 2012, 168, 315-332.	8.1	10
176	Helioseismology with PICARD. Journal of Physics: Conference Series, 2013, 440, 012025.	0.4	10
177	Ground-based measurements of the solar diameter during the rising phase of solar cycle 24. Astronomy and Astrophysics, 2014, 569, A60.	5.1	10
178	NEW SPACE VALUE OF THE SOLAR OBLATENESS OBTAINED WITH < i>PICARD < /i>. Astrophysical Journal, 2014, 785, 89.	4.5	10
179	O2 and OH Night Airglow Emission Derived from GOMOS-Envisat Instrument. Journal of Atmospheric and Oceanic Technology, 2014, 31, 1301-1311.	1.3	10
180	Improved GOMOS/Envisat ozone retrievals in the upper troposphere and the lower stratosphere. Atmospheric Measurement Techniques, 2017, 10, 231-246.	3.1	10

#	Article	IF	Citations
181	Detection of Aerosols in Antarctica From Longâ€Range Transport of the 2009 Australian Wildfires. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032542.	3.3	10
182	A review of remote sensing techniques and related spectroscopy problems. Comptes Rendus Physique, 2005, 6, 825-835.	0.9	9
183	Investigations of stratospheric temperature regional variability with lidar and Advanced Microwave Sounding Unit. Journal of Geophysical Research, 2011, 116, .	3.3	9
184	Modes of variability of the vertical temperature profile of the middle atmosphere at mid-latitude: Similarities with solar forcing. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 75-76, 92-97.	1.6	9
185	A new climatology of aerosols in the middle and upper stratosphere by alternative analysis of GOMOS observations during 2002–2006. International Journal of Remote Sensing, 2013, 34, 4986-5029.	2.9	9
186	A climatology of frozenâ€in anticyclones in the spring arctic stratosphere over the period 1960–2011. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1299-1311.	3.3	9
187	Gravity Wave Breaking Associated with Mesospheric Inversion Layers as Measured by the Ship-Borne BEM Monge Lidar and ICON-MIGHTI. Atmosphere, 2021, 12, 1386.	2.3	9
188	INSPIRE-SAT 7, a Second CubeSat to Measure the Earth's Energy Budget and to Probe the Ionosphere. Remote Sensing, 2022, 14, 186.	4.0	9
189	Large scale structure of the stratosphere and the lower mesosphere (20–60 km) over the northern hemisphere during the MAP/WINE campaign. Journal of Atmospheric and Solar-Terrestrial Physics, 1987, 49, 621-637.	0.9	8
190	Contribution to the new reference atmosphere from ground-based lidar. Advances in Space Research, 1990, 10, 211-216.	2.6	8
191	Analysis of polar stratospheric clouds using temperature and aerosols measured by the Alomar R/M/R lidar. Journal of Geophysical Research, 2001, 106, 24127-24141.	3.3	8
192	Global structure and composition of the martian atmosphere with SPICAM on Mars express. Advances in Space Research, 2005, 35, 31-36.	2.6	8
193	MISOLFA: a generalized monitor for daytime spatio-temporal turbulence characterization. Monthly Notices of the Royal Astronomical Society, 2016, 458, 517-530.	4.4	8
194	Solarâ€Related Variations of the Cloud Top Circulation Above Aphrodite Terra From VMC/Venus Express Wind Fields. Journal of Geophysical Research E: Planets, 2019, 124, 1864-1879.	3.6	8
195	Intercomparison and evaluation of ground- and satellite-based stratospheric ozone and temperature profiles above Observatoire de Haute-Provence during the Lidar Validation NDACC Experiment (LAVANDE). Atmospheric Measurement Techniques, 2020, 13, 5621-5642.	3.1	8
196	Stratospheric Final Warmings fall into two categories with different evolution over the course of the year. Communications Earth & Environment, 2022, 3, .	6.8	8
197	Lidar survey of the post Mt St Helens stratospheric aerosol at Haute Provence Observatory. Applied Optics, 1981, 20, A70.	2.1	7
198	Fine-scale study of a thick stratospheric ozone lamina at the edge of the southern subtropical barrier: 2. Numerical simulations with coupled dynamics models. Journal of Geophysical Research, 2005, 110, .	3.3	7

#	Article	IF	Citations
199	Forecast, measurement, and modeling of an unprecedented polar ozone filament event over Mauna Loa Observatory, Hawaii. Journal of Geophysical Research, 2006, 111 , .	3.3	7
200	Nocturnal temperature changes over tropics during CAWSES-III campaign: Comparison with numerical models and satellite data. Journal of Atmospheric and Solar-Terrestrial Physics, 2010, 72, 1171-1179.	1.6	7
201	On HMI solar oblateness during solar cycle 24 and impact of the space environment on results. Advances in Space Research, 2016, 58, 1425-1440.	2.6	7
202	Comparisons of spectrally resolved nightglow emission locally simulated with space and ground level observations. Journal of Space Weather and Space Climate, 2020, 10, 21.	3.3	7
203	Intelcomparisons of simultaneous remote and in situ wind measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 1994, 56, 1985-2001.	0.9	6
204	A first comparison of GOMOS aerosol extinction retrievals with other measurements. Advances in Space Research, 2005, 36, 894-898.	2.6	6
205	Detecting variability changes in Arctic total ozone column. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 1383-1395.	1.6	6
206	Impact of Solar Activity on Stratospheric Ozone and NO2 Observed by Gomos/Envisat. Space Science Reviews, 2007, 125, 393-402.	8.1	6
207	Increased UV radiation due to polar ozone chemical depletion and vortex occurrences at Southern Sub-polar Latitudes in the period [1997–2005]. Atmospheric Chemistry and Physics, 2008, 8, 5339-5352.	4.9	6
208	Sensitivity of the tropical stratospheric ozone response to the solar rotational cycle in observations and chemistry–climate model simulations. Atmospheric Chemistry and Physics, 2017, 17, 9897-9916.	4.9	6
209	High-resolution temperature profiles retrieved from bichromatic stellar scintillation measurements by GOMOS/Envisat. Atmospheric Measurement Techniques, 2019, 12, 585-598.	3.1	6
210	A new MesosphEO data set of temperature profiles from 35 to 85 km using Rayleigh scattering at limb from GOMOS/ENVISAT daytime observations. Atmospheric Measurement Techniques, 2019, 12, 749-761.	3.1	6
211	Lidar Sounding of the Structure and Dynamics of the Middle Atmosphere. A Review of Recent Results Relevant to Transport Processes., 1987,, 459-477.		6
212	Atmospheric Density and Temperature Vertical Profile Retrieval for Flight-Tests with a Rayleigh Lidar On-Board the French Advanced Test Range Ship Monge. Atmosphere, 2020, 11, 75.	2.3	6
213	Measurement of stratospheric chromatic scintillation with the AMON-RA balloonborne spectrometer. Applied Optics, 2001, 40, 4254.	2.1	5
214	Evaluation of Stratospheric Radio Occultation Retrieval Using Data from CHAMP, MIPAS, GOMOS, and ECMWF Analysis Fields., 2005, , 531-536.		5
215	Dark signal correction for a lukecold frame-transfer CCD. Astronomy and Astrophysics, 2014, 561, A17.	5.1	5
216	Solar Spectral Irradiance at 782 nm as Measured by the SES Sensor Onboard Picard. Solar Physics, 2016, 291, 1043-1057.	2.5	5

#	Article	IF	CITATIONS
217	Evolution of the intensity and duration of the Southern Hemisphere stratospheric polar vortex edge for the period 1979–2020. Atmospheric Chemistry and Physics, 2022, 22, 4187-4200.	4.9	5
218	First results of a stratospheric experiment using a montgolfiere infra-rouge (MIR). Advances in Space Research, 1985, 5, 27-30.	2.6	4
219	Basic features of large-scale processes in the middle atmosphere during DYANA. Journal of Atmospheric and Solar-Terrestrial Physics, 1994, 56, 1659-1674.	0.9	4
220	A study of ozone variability and its connection with meridional transport in the northern Pacific lower stratosphere during summer 2002. Journal of Geophysical Research, 2004, 109, .	3.3	4
221	Autoregressive smoothing of GOMOS transmittances. Advances in Space Research, 2005, 36, 899-905.	2.6	4
222	How Earth atmospheric radiations may affect astronomical observations from low-orbit satellites. , 2012, , .		4
223	PICARD payload thermal control system and general impact of the space environment on astronomical observations. , 2013, , .		4
224	PICARD SOL, a new ground-based facility for long-term solar radius measurements: first results. Journal of Physics: Conference Series, 2013, 440, 012003.	0.4	4
225	Main results of the PICARD mission. Proceedings of SPIE, 2016, , .	0.8	4
226	Jet-setting atmosphere. Nature Geoscience, 2017, 10, 622-623.	12.9	4
227	Nighttime Mesospheric/Lower Thermospheric Tropical Ozone Response to the 27â€Day Solar Rotational Cycle: ENVISATâ€GOMOS Satellite Observations Versus HAMMONIA Idealized Chemistryâ€Climate Model Simulations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8883-8896.	3.3	4
228	New method of enhancement using wavelet transforms applied to SODISM telescope. Advances in Space Research, 2019, 63, 606-616.	2.6	4
229	Investigation of infrasound signatures from microbaroms using OH airglow and ground-based microbarometers. Advances in Space Research, 2020, 65, 902-908.	2.6	4
230	Validation of GOMOS/Envisat High-Resolution Temperature Profiles (HRTP) Using Spectral Analysis. , 2009, , 97-107.		4
231	SOLAR-v: A new solar spectral irradiance dataset based on SOLAR/SOLSPEC observations during solar cycle 24. Astronomy and Astrophysics, 2021, 645, A2.	5.1	4
232	Assessment of ERA-5 Temperature Variability in the Middle Atmosphere Using Rayleigh LiDAR Measurements between 2005 and 2020. Atmosphere, 2022, 13, 242.	2.3	4
233	Impact of the COVID-19 pandemic related to lockdown measures on tropospheric NO ₂ columns over ÃŽle-de-France. Atmospheric Chemistry and Physics, 2021, 21, 18303-18317.	4.9	4
234	Updated Climatology of Mesospheric Temperature Inversions Detected by Rayleigh Lidar above Observatoire de Haute Provence, France, Using a K-Mean Clustering Technique. Atmosphere, 2022, 13, 814.	2.3	4

#	Article	IF	Citations
235	Lidar Temperature Measurements in the Middle Atmosphere The Review of Laser Engineering, 1995, 23, 119-123.	0.0	3
236	Correlated measurements of mesospheric density and near infrared airglow. Advances in Space Research, 2003, 32, 777-782.	2.6	3
237	Complex organic matter in Titan's aerosols? (Reply). Nature, 2006, 444, E6-E7.	27.8	3
238	PICARD SOL mission, a ground-based facility for long-term solar radius measurement. , 2012, , .		3
239	An innovative rotational Raman lidar to measure the temperature profile from the surface to 30 km altitude. EPJ Web of Conferences, 2016, 119, 06008.	0.3	3
240	Poleward transport variability in the Northern Hemisphere during final stratospheric warmings simulated by CESM(WACCM). Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,394.	3.3	3
241	Ground-Based Rayleigh-Mie Doppler Lidar for Wind Measurements in the Middle Atmosphere. EPJ Web of Conferences, 2016, 119, 13005.	0.3	3
242	On-orbit degradation of recent space-based solar instruments and understanding of the degradation processes. , 2017, , .		3
243	Exploring fine-scale variability of stratospheric wind above the tropical la reunion island using rayleigh-mie doppler lidar. EPJ Web of Conferences, 2018, 176, 03004.	0.3	3
244	Temperature Trends Observed in the Middle Atmosphere and Future Directions. , 2019, , 805-823.		3
245	Middle-Atmosphere Temperature Monitoring Addressed with a Constellation of CubeSats Dedicated to Climate Issues. Journal of Atmospheric and Oceanic Technology, 2021, 38, 685-693.	1.3	3
246	Observation of Gravity Wave Vertical Propagation through a Mesospheric Inversion Layer. Atmosphere, 2022, 13, 1003.	2.3	3
247	The MSDOL Project: Assimilation of Gomos Ozone Data in a 3-D chemistry-transport model. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 1999, 24, 435-437.	0.2	2
248	Analysis of the spatial distribution of the unusual NO ₂ enhancements in the Arctic polar upper stratosphere and mesosphere observed by GOMOSâ€Envisat in January–March 2004. Journal of Geophysical Research, 2009, 114, .	3.3	2
249	OCIO slant column densities derived from GOMOS averaged transmittance measurements. Atmospheric Measurement Techniques, 2013, 6, 2953-2964.	3.1	2
250	SERB, a nano-satellite dedicated to the Earth-Sun relationship. Proceedings of SPIE, 2016, , .	0.8	2
251	GOMOS serendipitous data products: The mesospheric sodium layer and various limb emissions. Advances in Space Research, 2005, 36, 967-972.	2.6	1
252	The dynamical influence of the Pinatubo eruption in the subtropical stratosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 1600-1608.	1.6	1

#	Article	IF	CITATIONS
253	Observation of the thermal structure and dynamics of the stratosphere and the mesosphere from space. Comptes Rendus - Geoscience, 2010, 342, 323-330.	1.2	1
254	Atmospheric seeing measurements obtained with MISOLFA in the framework of the PICARD Mission. , 2012, , .		1
255	SUAVE: a UV telescope for space weather and solar variability studies. , 2014, , .		1
256	The PICARD Scientific Mission: status of the program. , 2014, , .		1
257	Recent Dynamic Studies on the Middle Atmosphere at Mid- and Low-Latitudes Using Rayleigh Lidar and Other Technologies. , 2019, , 757-776.		1
258	Impact of Solar Activity on Stratospheric Ozone and No2 Observed by GOMOS/ENVISAT., 2007, , 393-402.		1
259	A multi-channel Raman Lidar in photon counting mode using SiPM technology. , 2016, , .		1
260	Classification of Stratosphere Winter Evolutions Into Four Different Scenarios in the Northern Hemisphere. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	1
261	Thermal effects on solar images recorded in space. , 2014, , .		0
262	A nano-satellite to study the Sun and the Earth. Proceedings of SPIE, 2014, , .	0.8	0
263	Solar astrophysical fundamental parameters. Proceedings of SPIE, 2014, , .	0.8	0
264	Temperature Climatology with Rayleigh Lidar Above Observatory of Haute-Provence: Dynamical Feedback. EPJ Web of Conferences, 2016, 119, 13009.	0.3	0
265	Stratosphere NO y Species Measured by MIPAS and GOMOS Onboard ENVISAT During 2002–2010: Influence of Plasma Processes onto the Observed Distribution and Variability. Space Sciences Series of ISSI, 2011, , 315-332.	0.0	0
266	Étude des phénomÓnes météorologiques océaniques et méditerranéens interagissant sur la gÂ des crues exceptionnelles du bassin de la Seine l'amont de Paris. Houille Blanche, 2011, 97, 30-36.	(OnÃOrat	cion O
267	Doppler Wind Lidar in the Stratosphere: Sensitivity to High Mie Scattering and Self-Correction. , 1997, , 267-270.		0
268	How mission requirements affect observations: case of the PICARD mission. Proceedings of SPIE, 2016, , .	0.8	0