
Reijo Laaksonen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2341063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Primary cardiovascular risk prediction by LDL-cholesterol in Caucasian middle-aged and older adults: a joint analysis of three cohorts. European Journal of Preventive Cardiology, 2022, 29, e128-e137.	1.8	9
2	Comparison of recent ceramide-based coronary risk prediction scores in cardiovascular disease patients. European Journal of Preventive Cardiology, 2022, 29, 947-956.	1.8	10
3	TNFα induces endothelial dysfunction in rheumatoid arthritis via LOX-1 and arginase 2: reversal by monoclonal TNFα antibodies. Cardiovascular Research, 2022, 118, 254-266.	3.8	13
4	Plasma ceramide and phospholipid-based risk score and the risk of cardiovascular death in patients after acute coronary syndrome. European Journal of Preventive Cardiology, 2022, 29, 895-902.	1.8	18
5	Ceramides and phospholipids in plasma extracellular vesicles are associated with high risk of major cardiovascular events after carotid endarterectomy. Scientific Reports, 2022, 12, 5521.	3.3	8
6	Plasma ceramides independently predict all-cause mortality in men aged 85+. Age and Ageing, 2022, 51, .	1.6	1
7	Improving 1-year mortality prediction in ACS patients using machine learning. European Heart Journal: Acute Cardiovascular Care, 2021, 10, 855-865.	1.0	9
8	Absolute and relative risk prediction in cardiovascular primary prevention with a modified SCORE chart incorporating ceramide-phospholipid risk score and diabetes mellitus. European Heart Journal Open, 2021, 1, .	2.3	11
9	Trimethyllysine predicts all-cause and cardiovascular mortality in community-dwelling adults and patients with coronary heart disease. European Heart Journal Open, 2021, 1, .	2.3	4
10	Prior myocardial infarction, coronary artery disease extent, diabetes mellitus, and CERT2 score for risk stratification in stable coronary artery disease. European Journal of Preventive Cardiology, 2021,	1.8	5
11	Coffee, Atrial Fibrillation, and Circulating Ceramides in Patients with Chronic Heart Failure. Journal of Agricultural and Food Chemistry, 2021, 69, 11236-11245.	5.2	5
12	A Randomized Controlled Dietary Intervention Improved the Serum Lipid Signature towards a Less Atherogenic Profile in Patients with Rheumatoid Arthritis. Metabolites, 2021, 11, 632.	2.9	6
13	Uncovering the shared lipidomic markers of subclinical osteoporosis-atherosclerosis comorbidity: The Young Finns Study. Bone, 2021, 151, 116030.	2.9	13
14	Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients. European Heart Journal, 2020, 41, 371-380.	2.2	180
15	Fenretinide treatment accelerates atherosclerosis development in apoEâ€deficient mice in spite of beneficial metabolic effects. British Journal of Pharmacology, 2020, 177, 328-345.	5.4	21
16	Lipidomic architecture shared by subclinical markers of osteoporosis and atherosclerosis: The Cardiovascular Risk in Young Finns Study. Bone, 2020, 131, 115160.	2.9	20
17	Ceramides and Ceramide Scores: Clinical Applications for Cardiometabolic Risk Stratification. Frontiers in Endocrinology, 2020, 11, 570628.	3.5	65
18	Ceramides improve atherosclerotic cardiovascular disease risk assessment beyond standard risk factors. Clinica Chimica Acta, 2020, 511, 138-142.	1.1	25

REIJO LAAKSONEN

#	Article	IF	CITATIONS
19	Prediction of Residual Risk by Ceramideâ€Phospholipid Score in Patients With Stable Coronary Heart Disease on Optimal Medical Therapy. Journal of the American Heart Association, 2020, 9, e015258.	3.7	34
20	Sex-specific associations of TCF7L2 variants with fasting glucose, type 2 diabetes and coronary heart disease among Turkish adults. Anatolian Journal of Cardiology, 2020, 24, 326-333.	0.9	1
21	hiPSCâ€derived hepatocytes closely mimic the lipid profile of primary hepatocytes: A future personalised cell model for studying the lipid metabolism of the liver. Journal of Cellular Physiology, 2019, 234, 3744-3761.	4.1	16
22	New evidence from plasma ceramides links apoE polymorphism to greater risk of coronary artery disease in Finnish adults. Journal of Lipid Research, 2019, 60, 1622-1629.	4.2	27
23	LDL triglycerides, hepatic lipase activity, and coronary artery disease: An epidemiologic and Mendelian randomization study. Atherosclerosis, 2019, 282, 37-44.	0.8	38
24	Whole blood microRNA levels associate with glycemic status and correlate with target mRNAs in pathways important to type 2 diabetes. Scientific Reports, 2019, 9, 8887.	3.3	55
25	Dedifferentiation of Primary Hepatocytes is Accompanied with Reorganization of Lipid Metabolism Indicated by Altered Molecular Lipid and miRNA Profiles. International Journal of Molecular Sciences, 2019, 20, 2910.	4.1	21
26	PCSK9 inhibition alters the lipidome of plasma and lipoprotein fractions. Atherosclerosis, 2018, 269, 159-165.	0.8	56
27	Association of Plasma Ceramides With Myocardial Perfusion in Patients With Coronary Artery Disease Undergoing Stress Myocardial Perfusion Scintigraphy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2854-2861.	2.4	29
28	Plasma concentrations of molecular lipid species predict long-term clinical outcome in coronary artery disease patients. Journal of Lipid Research, 2018, 59, 1729-1737.	4.2	105
29	Susceptibility of low-density lipoprotein particles to aggregate depends on particle lipidome, is modifiable, and associates with future cardiovascular deaths. European Heart Journal, 2018, 39, 2562-2573.	2.2	126
30	Differentially expressed genes and canonical pathway expression in human atherosclerotic plaques – Tampere Vascular Study. Scientific Reports, 2017, 7, 41483.	3.3	52
31	Relations between lipoprotein(a) concentrations, LPA genetic variants, and the risk of mortality in patients with established coronary heart disease: a molecular and genetic association study. Lancet Diabetes and Endocrinology,the, 2017, 5, 534-543.	11.4	84
32	Differentially expressed genes and canonical pathways in the ascending thoracic aortic aneurysm – The Tampere Vascular Study. Scientific Reports, 2017, 7, 12127.	3.3	20
33	Associations of functional alanine-glyoxylate aminotransferase 2 gene variants with atrial fibrillation and ischemic stroke. Scientific Reports, 2016, 6, 23207.	3.3	20
34	Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. European Heart Journal, 2016, 37, 1967-1976.	2.2	433
35	Circulating Ceramides Predict Cardiovascular Outcomes in the Population-Based FINRISK 2002 Cohort. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2424-2430.	2.4	249
36	Fast and Accurate Construction of Confidence Intervals for Heritability. American Journal of Human Genetics, 2016, 98, 1181-1192.	6.2	31

Reijo Laaksonen

#	Article	IF	CITATIONS
37	Development and validation of a high-throughput LC–MS/MS assay for routine measurement of molecular ceramides. Analytical and Bioanalytical Chemistry, 2016, 408, 3475-3483.	3.7	61
38	Fish oil and krill oil differentially modify the liver and brain lipidome when fed to mice. Lipids in Health and Disease, 2015, 14, 88.	3.0	24
39	Differential Network Analysis with Multiply Imputed Lipidomic Data. PLoS ONE, 2015, 10, e0121449.	2.5	3
40	Plasma concentrations of molecular lipid species in relation to coronary plaque characteristics and cardiovascular outcome: Results of the ATHEROREMO-IVUS study. Atherosclerosis, 2015, 243, 560-566.	0.8	120
41	Kindlin 3 (FERMT3) is associated with unstable atherosclerotic plaques, anti-inflammatory type II macrophages and upregulation of beta-2 integrins in all major arterial beds. Atherosclerosis, 2015, 242, 145-154.	0.8	29
42	Genetic variants primarily associated with type 2 diabetes are related to coronary artery disease risk. Atherosclerosis, 2015, 241, 419-426.	0.8	26
43	Predicting sudden cardiac death using common genetic risk variants for coronary artery disease. European Heart Journal, 2015, 36, 1669-1675.	2.2	26
44	Use and role of monoclonal antibodies and other biologics in preventive cardiology. Swiss Medical Weekly, 2015, 145, w14179.	1.6	3
45	Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease. PLoS Genetics, 2014, 10, e1004502.	3.5	192
46	EPIQ—efficient detection of SNP–SNP epistatic interactions for quantitative traits. Bioinformatics, 2014, 30, i19-i25.	4.1	11
47	Blood microRNA profile associates with the levels of serum lipids and metabolites associated with glucose metabolism and insulin resistance and pinpoints pathways underlying metabolic syndrome. Molecular and Cellular Endocrinology, 2014, 391, 41-49.	3.2	65
48	Molecular Lipids Identify Cardiovascular Risk and Are Efficiently Lowered by Simvastatin and <i>PCSK9</i> Deficiency. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E45-E52.	3.6	180
49	Shared Genetic Susceptibility to Ischemic Stroke and Coronary Artery Disease. Stroke, 2014, 45, 24-36.	2.0	302
50	Abnormal Splicing of NEDD4 in Myotonic Dystrophy Type 2. American Journal of Pathology, 2014, 184, 2322-2332.	3.8	16
51	STOMPing forward: Statins, muscle complaints and CK. Atherosclerosis, 2013, 230, 256-257.	0.8	6
52	Lipidomics-Based Safety Biomarkers for Lipid-Lowering Treatments. Angiology, 2008, 59, 65S-68S.	1.8	23
53	On the mechanisms of statin-induced myopathy. Clinical Pharmacology and Therapeutics, 2006, 79, 529-531.	4.7	28
54	Paraoxonase gene polymorphisms and coronary reactivity in young healthy men. Journal of Molecular Medicine, 2001, 79, 449-456.	3.9	24