
C Frank Bennett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2340677/publications.pdf Version: 2024-02-01

C EDANK RENNETT

#	Article	IF	CITATIONS
1	Antisense Drugs Make Sense for Neurological Diseases. Annual Review of Pharmacology and Toxicology, 2021, 61, 831-852.	9.4	54
2	α-Synuclein antisense oligonucleotides as a disease-modifying therapy for Parkinson's disease. JCI Insight, 2021, 6, .	5.0	60
3	Nuclear accumulation of CHMP7 initiates nuclear pore complex injury and subsequent TDP-43 dysfunction in sporadic and familial ALS. Science Translational Medicine, 2021, 13, .	12.4	68
4	Cholesterol-functionalized DNA/RNA heteroduplexes cross the blood–brain barrier and knock down genes in the rodent CNS. Nature Biotechnology, 2021, 39, 1529-1536.	17.5	75
5	Phase 1–2 Trial of Antisense Oligonucleotide Tofersen for <i>SOD1</i> ALS. New England Journal of Medicine, 2020, 383, 109-119.	27.0	354
6	Antisense oligonucleotide drugs for neurological and neuromuscular disease. , 2020, , 221-245.		0
7	Antisense Oligonucleotide Therapies for Neurodegenerative Diseases. Annual Review of Neuroscience, 2019, 42, 385-406.	10.7	214
8	Conjugation of hydrophobic moieties enhances potency of antisense oligonucleotides in the muscle of rodents and non-human primates. Nucleic Acids Research, 2019, 47, 6045-6058.	14.5	48
9	Targeting Huntingtin Expression in Patients with Huntington's Disease. New England Journal of Medicine, 2019, 380, 2307-2316.	27.0	493
10	Nusinersen in later-onset spinal muscular atrophy. Neurology, 2019, 92, e2492-e2506.	1.1	183
11	Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nature Neuroscience, 2019, 22, 180-190.	14.8	345
12	Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy. New England Journal of Medicine, 2018, 378, 625-635.	27.0	977
13	Huntingtin suppression restores cognitive function in a mouse model of Huntington's disease. Science Translational Medicine, 2018, 10, .	12.4	89
14	Antisense oligonucleotides targeting mutant Ataxin-7 restore visual function in a mouse model of spinocerebellar ataxia type 7. Science Translational Medicine, 2018, 10, .	12.4	63
15	Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. Journal of Clinical Investigation, 2018, 128, 3558-3567.	8.2	171
16	Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Science Translational Medicine, 2017, 9, .	12.4	354
17	Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature, 2017, 544, 362-366.	27.8	263
18	Targeting DMPK with Antisense Oligonucleotide Improves Muscle Strength in Myotonic Dystrophy Type 1 Mice. Molecular Therapy - Nucleic Acids, 2017, 7, 465-474.	5.1	71

C FRANK BENNETT

#	Article	IF	CITATIONS
19	Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. New England Journal of Medicine, 2017, 377, 1723-1732.	27.0	1,533
20	Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet, The, 2016, 388, 3017-3026.	13.7	801
21	Results from a phase 1 study of nusinersen (ISIS-SMN _{Rx}) in children with spinal muscular atrophy. Neurology, 2016, 86, 890-897.	1.1	506
22	DNA/RNA heteroduplex oligonucleotide for highly efficient gene silencing. Nature Communications, 2015, 6, 7969.	12.8	99
23	Identification and Characterization of Modified Antisense Oligonucleotides Targeting <i>DMPK</i> in Mice and Nonhuman Primates for the Treatment of Myotonic Dystrophy Type 1. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 329-340.	2.5	106
24	Pharmacology of a Central Nervous System Delivered 2′- <i>O</i> -Methoxyethyl–Modified Survival of Motor Neuron Splicing Oligonucleotide in Mice and Nonhuman Primates. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 46-55.	2.5	238
25	Antisense Oligonucleotide-Based Therapies for Diseases Caused by pre-mRNA Processing Defects. Advances in Experimental Medicine and Biology, 2014, 825, 303-352.	1.6	60
26	Allele-Specific Suppression of Mutant Huntingtin Using Antisense Oligonucleotides: Providing a Therapeutic Option for All Huntington Disease Patients. PLoS ONE, 2014, 9, e107434.	2.5	92
27	An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurology, The, 2013, 12, 435-442.	10.2	534
28	RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention. Neuron, 2013, 80, 415-428.	8.1	785
29	Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS. Nucleic Acids Research, 2013, 41, 9634-9650.	14.5	138
30	Targeted degradation of sense and antisense <i>C9orf72</i> RNA foci as therapy for ALS and frontotemporal degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4530-9.	7.1	508
31	Antisense Oligonucleotide-Mediated Correction of Transcriptional Dysregulation is Correlated with Behavioral Benefits in the YAC128 Mouse Model of Huntington's Disease. Journal of Huntington's Disease, 2013, 2, 217-228.	1.9	58
32	Sustained Therapeutic Reversal of Huntington's Disease by Transient Repression of Huntingtin Synthesis. Neuron, 2012, 74, 1031-1044.	8.1	635
33	Antisense oligonucleotide therapeutics for inherited neurodegenerative diseases. Trends in Molecular Medicine, 2012, 18, 634-643.	6.7	116
34	Potent and Selective Antisense Oligonucleotides Targeting Single-Nucleotide Polymorphisms in the Huntington Disease Gene / Allele-Specific Silencing of Mutant Huntingtin. Molecular Therapy, 2011, 19, 2178-2185.	8.2	246
35	Antisense Oligonucleotides Delivered to the Mouse CNS Ameliorate Symptoms of Severe Spinal Muscular Atrophy. Science Translational Medicine, 2011, 3, 72ra18.	12.4	437
36	Allele-Selective Inhibition of Mutant <i>Huntingtin</i> Expression with Antisense Oligonucleotides Targeting the Expanded CAG Repeat. Biochemistry, 2010, 49, 10166-10178.	2.5	127

C FRANK BENNETT

#	Article	IF	CITATIONS
37	RNA Targeting Therapeutics: Molecular Mechanisms of Antisense Oligonucleotides as a Therapeutic Platform. Annual Review of Pharmacology and Toxicology, 2010, 50, 259-293.	9.4	1,136
38	Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Research, 2007, 35, 687-700.	14.5	361
39	Antisense oligonucleotide therapy for neurodegenerative disease. Journal of Clinical Investigation, 2006, 116, 2290-2296.	8.2	425