Jong M Rho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2340359/publications.pdf

Version: 2024-02-01

138 8,474 46 88
papers citations h-index g-index

140 140 140 7052 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Genotype-phenotype correlations in <i>SCN8A</i> -related disorders reveal prognostic and therapeutic implications. Brain, 2022, 145, 2991-3009.	3.7	69
2	Seizure modulation by the gut microbiota and tryptophan-kynurenine metabolism in an animal model of infantile spasms. EBioMedicine, 2022, 76, 103833.	2.7	25
3	Abnormal oxidative metabolism in the cuprizone mouse model of demyelination: An in vivo NIRS-MRI study. Neurolmage, 2022, 250, 118935.	2.1	9
4	Probiotics counteract hepatic steatosis caused by ketogenic diet and upregulate AMPK signaling in a model of infantile epilepsy. EBioMedicine, 2022, 76, 103838.	2.7	16
5	The metabolic basis of epilepsy. Nature Reviews Neurology, 2022, 18, 333-347.	4.9	68
6	Gut-based manipulations spur hippocampal mitochondrial bioenergetics in a model of pediatric epilepsy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166446.	1.8	6
7	Addition of Prebiotics to the Ketogenic Diet Improves Metabolic Profile but Does Not Affect Seizures in a Rodent Model of Infantile Spasms Syndrome. Nutrients, 2022, 14, 2210.	1.7	1
8	Circadian Responses to Light in the BTBR Mouse. Journal of Biological Rhythms, 2022, 37, 498-515.	1.4	4
9	Targeted gut microbiota manipulation attenuates seizures in a model of infantile spasms syndrome. JCI Insight, 2022, 7, .	2.3	11
10	Selective Probiotic Treatment Positively Modulates the Microbiota–Gut–Brain Axis in the BTBR Mouse Model of Autism. Brain Sciences, 2022, 12, 781.	1.1	10
11	Metabolic epilepsies amenable to ketogenic therapies: Indications, contraindications, and underlying mechanisms. Journal of Inherited Metabolic Disease, 2021, 44, 42-53.	1.7	24
12	A team science approach to discover novel targets for infantile spasms (IS). Epilepsia Open, 2021, 6, 49-61.	1.3	3
13	Creation and implementation of an electronic health record note for quality improvement in pediatric epilepsy: Practical considerations and lessons learned. Epilepsia Open, 2021, 6, 345-358.	1.3	3
14	Metabolismâ€based therapies for epilepsy: new directions for future cures. Annals of Clinical and Translational Neurology, 2021, 8, 1730-1737.	1.7	6
15	Ketogenic diet–mediated seizure reduction preserves CA1 cell numbers in epileptic <i>Kcna1</i> â€null mice: An unbiased stereological assessment. Epilepsia, 2021, 62, e123-e128.	2.6	5
16	The ketogenic diet raises brain oxygen levels, attenuates postictal hypoxia, and protects against learning impairments. Neurobiology of Disease, 2021, 154, 105335.	2.1	7
17	The link between brain acidosis, breathing and seizures: a novel mechanism of action for the ketogenic diet in a model of infantile spasms. Brain Communications, 2021, 3, fcab189.	1.5	14
18	Prebiotic, Probiotic, and Synbiotic Consumption Alter Behavioral Variables and Intestinal Permeability and Microbiota in BTBR Mice. Microorganisms, 2021, 9, 1833.	1.6	17

#	Article	IF	CITATIONS
19	Gene-Targeted Therapies in Pediatric Neurology: Challenges and Opportunities in Diagnosis and Delivery. Pediatric Neurology, 2021, 125, 53-57.	1.0	6
20	A ketogenic diet affects brain volume and metabolome in juvenile mice. NeuroImage, 2021, 244, 118542.	2.1	10
21	Behavioral Deficits in Mice with Postnatal Disruption of <i>Ndel1</i> Implications for Epilepsy and Neuropsychiatric Disorders. Cerebral Cortex Communications, 2021, 2, tgaa096.	0.7	6
22	Pharmacokinetics and central accumulation of delta-9-tetrahydrocannabinol (THC) and its bioactive metabolites are influenced by route of administration and sex in rats. Scientific Reports, 2021, 11, 23990.	1.6	39
23	Epigenetics and epilepsy prevention: The therapeutic potential of adenosine and metabolic therapies. Neuropharmacology, 2020, 167, 107741.	2.0	50
24	Metabolic Framework for the Improvement of Autism Spectrum Disorders by a Modified Ketogenic Diet: A Pilot Study. Journal of Proteome Research, 2020, 19, 382-390.	1.8	23
25	Postnatal Role of the Cytoskeleton in Adult Epileptogenesis. Cerebral Cortex Communications, 2020, 1 , tgaa 024 .	0.7	4
26	Atypical visual processing in a mouse model of autism. Scientific Reports, 2020, 10, 12390.	1.6	14
27	Pediatric Neurology Research in the Twenty-First Century: Status, Challenges, and Future Directions Post–COVID-19. Pediatric Neurology, 2020, 113, 2-12.	1.0	4
28	Aberrant Mitochondrial Morphology and Function in the BTBR Mouse Model of Autism Is Improved by Two Weeks of Ketogenic Diet. International Journal of Molecular Sciences, 2020, 21, 3266.	1.8	34
29	Metabolism-based drug discovery in zebrafish: An emerging strategy to uncover new anti-seizure therapies. Neuropharmacology, 2020, 167, 107988.	2.0	10
30	Reelin Improves Cognition and Extends the Lifespan of Mutant Ndel1 Mice with Postnatal CA1 Hippocampus Deterioration. Cerebral Cortex, 2020, 30, 4964-4978.	1.6	6
31	Metabolism and epilepsy: Ketogenic diets as a homeostatic link. Brain Research, 2019, 1703, 26-30.	1.1	50
32	Single-center experience with Beta-propeller protein-associated neurodegeneration (BPAN); expanding the phenotypic spectrum. Molecular Genetics and Metabolism Reports, 2019, 20, 100483.	0.4	13
33	Precocious myelination in a mouse model of autism. Translational Psychiatry, 2019, 9, 251.	2.4	24
34	Position Statement on the Use of Medical Cannabis for the Treatment of Epilepsy in Canada. Canadian Journal of Neurological Sciences, 2019, 46, 645-652.	0.3	8
35	Ketone Administration for Seizure Disorders: History and Rationale for Ketone Esters and Metabolic Alternatives. Frontiers in Neuroscience, 2019, 13, 1041.	1.4	39
36	2-Deoxyglucose and Beta-Hydroxybutyrate: Metabolic Agents for Seizure Control. Frontiers in Cellular Neuroscience, 2019, 13, 172.	1.8	30

#	Article	IF	CITATIONS
37	Highlights From the Annual Meeting of the American Epilepsy Society 2018. Epilepsy Currents, 2019, 19, 152-158.	0.4	5
38	Rodent Sleep Assessment with a Trainable Video-based Approach. , 2019, , .		2
39	Enhanced glycolytic metabolism supports transmigration of brain-infiltrating macrophages in multiple sclerosis. Journal of Clinical Investigation, 2019, 129, 3277-3292.	3.9	75
40	Electrophysiological characterization of a mitochondrial inner membrane chloride channel in rat brain. FEBS Letters, 2018, 592, 1545-1553.	1.3	4
41	A novel metabolism-based phenotypic drug discovery platform in zebrafish uncovers HDACs 1 and 3 as a potential combined anti-seizure drug target. Brain, 2018, 141, 744-761.	3.7	54
42	Ketogenic diet-induced extension of longevity in epileptic Kcna1 -null mice is influenced by gender and age at treatment onset. Epilepsy Research, 2018, 140, 53-55.	0.8	11
43	ER-stress mobilization of death-associated protein kinase-1–dependent xenophagy counteracts mitochondria stress–induced epithelial barrier dysfunction. Journal of Biological Chemistry, 2018, 293, 3073-3087.	1.6	35
44	Do ketone bodies mediate the anti-seizure effects of the ketogenic diet?. Neuropharmacology, 2018, 133, 233-241.	2.0	111
45	Brief history of antiâ€seizure drug development. Epilepsia Open, 2018, 3, 114-119.	1.3	55
46	Glycolytic inhibition: A novel approach toward controlling neuronal excitability and seizures. Epilepsia Open, 2018, 3, 191-197.	1.3	20
47	Optimal clinical management of children receiving dietary therapies for epilepsy: Updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open, 2018, 3, 175-192.	1.3	412
48	Infantile Epileptic Encephalopathy With Multiple Genetic Mutations: How Important are Variants of Undetermined Significance?. Seminars in Pediatric Neurology, 2018, 26, 33-36.	1.0	2
49	Altered circadian rhythms and oscillation of clock genes and sirtuin 1 in a model of sudden unexpected death in epilepsy. Epilepsia, 2018, 59, 1527-1539.	2.6	32
50	Comorbid epilepsy in autism spectrum disorder: Implications of postnatal inflammation for brain excitability. Epilepsia, 2018, 59, 1316-1326.	2.6	20
51	How does the ketogenic diet induce anti-seizure effects?. Neuroscience Letters, 2017, 637, 4-10.	1.0	158
52	Carisbamate blockade of Tâ€type voltageâ€gated calcium channels. Epilepsia, 2017, 58, 617-626.	2.6	5
53	Adrenocorticotropic hormone protects learning and memory function in epileptic Kcna1 -null mice. Neuroscience Letters, 2017, 645, 14-18.	1.0	10
54	The relationship between <scp>d</scp> â€betaâ€hydroxybutyrate blood concentrations and seizure control in children treated with the ketogenic diet for medically intractable epilepsy. Epilepsia Open, 2017, 2, 317-321.	1.3	42

#	Article	IF	Citations
55	Ketone Bodies as Anti-Seizure Agents. Neurochemical Research, 2017, 42, 2011-2018.	1.6	67
56	Ketogenic diet leads to O-GlcNAc modification in the BTBRT+tf/j mouse model of autism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2274-2281.	1.8	11
57	Need for new review of article on ketogenic dietary regimes for cancerÂpatients. Medical Oncology, 2017, 34, 108.	1.2	11
58	Clinical studies and antiâ€inflammatory mechanisms of treatments. Epilepsia, 2017, 58, 69-82.	2.6	34
59	Genetic modifications associated with ketogenic diet treatment in the BTBR ^{T+Tf/J} mouse model of autism spectrum disorder. Autism Research, 2017, 10, 456-471.	2.1	34
60	Disruption of visual circuit formation and refinement in a mouse model of autism. Autism Research, 2017, 10, 212-223.	2.1	13
61	Metabolic Dysfunction Underlying Autism Spectrum Disorder and Potential Treatment Approaches. Frontiers in Molecular Neuroscience, 2017, 10, 34.	1.4	96
62	Dendritic overgrowth and elevated ERK signaling during neonatal development in a mouse model of autism. PLoS ONE, 2017, 12, e0179409.	1.1	41
63	Tissue Specific Impacts of a Ketogenic Diet on Mitochondrial Dynamics in the BTBRT+tf/j Mouse. Frontiers in Physiology, 2016, 7, 654.	1.3	30
64	Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Molecular Autism, 2016, 7, 37.	2.6	204
65	Ketogenic diet treatment increases longevity in <i>Kcna1</i> â€null mice, a model of sudden unexpected death in epilepsy. Epilepsia, 2016, 57, e178-82.	2.6	53
66	Ndel1 and Reelin Maintain Postnatal CA1 Hippocampus Integrity. Journal of Neuroscience, 2016, 36, 6538-6552.	1.7	18
67	Mechanisms of Action of Antiseizure Drugs and the Ketogenic Diet. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a022780.	2.9	233
68	Ketogenic diet restores aberrant cortical motor maps and excitation-to-inhibition imbalance in the BTBR mouse model of autism spectrum disorder. Behavioural Brain Research, 2016, 304, 67-70.	1.2	29
69	Metabolomic Modeling To Monitor Host Responsiveness to Gut Microbiota Manipulation in the BTBR ^{T+tf/j} Mouse. Journal of Proteome Research, 2016, 15, 1143-1150.	1.8	43
70	"Tinkle Tinkle Little Girl, How We Wonder Why You Can't― An Unusual AIDP-like Syndrome in a Toddler. Canadian Journal of Neurological Sciences, 2015, 42, 274-277.	0.3	0
71	Differential effects of duration of sleep fragmentation on spatial learning and synaptic plasticity in pubertal mice. Brain Research, 2015, 1615, 116-128.	1.1	24
72	Efficacy of Intravenous Immunoglobulin in a Cohort of Children With Drug-Resistant Epilepsy. Pediatric Neurology, 2015, 52, 509-516.	1.0	34

#	Article	IF	CITATIONS
73	Inhibition of Lactate Dehydrogenase to Treat Epilepsy. New England Journal of Medicine, 2015, 373, 187-189.	13.9	25
74	Ketone bodies mediate antiseizure effects through mitochondrial permeability transition. Annals of Neurology, 2015, 78, 77-87.	2.8	151
75	Stoichiometric expression of mtHsp40 and mtHsp70 modulates mitochondrial morphology and cristae structure via Opa1 _L cleavage. Molecular Biology of the Cell, 2015, 26, 2156-2167.	0.9	16
76	Ketones Prevent Oxidative Impairment of Hippocampal Synaptic Integrity through KATP Channels. PLoS ONE, 2015, 10, e0119316.	1.1	48
77	The New Ketone Alphabet Soup: BHB, HCA, and HDAC. Epilepsy Currents, 2014, 14, 355-357.	0.4	9
78	Unilateral Foot Drop as an Initial Presentation of a Brain Tumor in a Child. Journal of Child Neurology, 2014, 29, 955-958.	0.7	6
79	The Ketogenic Diet Modifies Social and Metabolic Alterations Identified in the Prenatal Valproic Acid Model of Autism Spectrum Disorder. Developmental Neuroscience, 2014, 36, 371-380.	1.0	77
80	Ketogenic diets, mitochondria, and neurological diseases. Journal of Lipid Research, 2014, 55, 2211-2228.	2.0	190
81	Inchworming: A Novel Motor Stereotypy in the BTBR T⁺ Itpr3^{tf} /J Mouse Model of Autism. Journal of Visualized Experiments, 2014, , .	0.2	7
82	Loss of the Kv1.1 potassium channel promotes pathologic sharp waves and high frequency oscillations in in vitro hippocampal slices. Neurobiology of Disease, 2013, 54, 68-81.	2.1	57
83	Ketogenic Diet Improves Core Symptoms of Autism in BTBR Mice. PLoS ONE, 2013, 8, e65021.	1.1	136
84	The Ketogenic Diet as a Treatment Paradigm for Diverse Neurological Disorders. Frontiers in Pharmacology, 2012, 3, 59.	1.6	347
85	Finding a better drug for epilepsy: Antiepileptogenesis targets. Epilepsia, 2012, 53, 1868-1876.	2.6	82
86	The ketogenic diet: What has science taught us?. Epilepsy Research, 2012, 100, 210-217.	0.8	42
87	Inflammation-Mediated Memory Dysfunction and Effects of a Ketogenic Diet in a Murine Model of Multiple Sclerosis. PLoS ONE, 2012, 7, e35476.	1.1	202
88	Adenosine: A Fundamental Factor Formed from Fatty Feasts for Fighting Fits?. Epilepsy Currents, 2012, 12, 19-21.	0.4	0
89	Sweets Are BAD for Seizures. Epilepsy Currents, 2012, 12, 218-219.	0.4	2
90	The Ketogenic Diet Is an Effective Adjuvant to Radiation Therapy for the Treatment of Malignant Glioma. PLoS ONE, 2012, 7, e36197.	1.1	221

#	Article	IF	Citations
91	L-Type calcium channel blockade reduces network activity in human epileptic hypothalamic hamartoma tissue. Epilepsia, 2011, 52, 531-540.	2.6	19
92	Pediatric stroke. Child's Nervous System, 2011, 27, 1375-1390.	0.6	40
93	Ketogenic diet in the treatment of seizures associated with hypothalamic hamartomas. Epilepsy Research, 2011, 94, 218-221.	0.8	19
94	A "Happy―Toddler Presenting With Sudden, Life-Threatening Seizures. Seminars in Pediatric Neurology, 2010, 17, 35-38.	1.0	9
95	Another Look at Early GABAergic Neurotransmission: Maybe It's Not So Exciting after All!. Epilepsy Currents, 2010, 10, 128-130.	0.4	1
96	How Does Altered Metabolism Lead to Seizure Control? Partially Filling the Knowledge Gap. Epilepsy Currents, 2010, 10, 159-161.	0.4	2
97	Mechanisms of ketogenic diet action. Epilepsia, 2010, 51, 85-85.	2.6	22
98	Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors. Journal of Neurochemistry, 2010, 114, 130-141.	2.1	89
99	Reversible Lamotrigine-Induced Neurobehavioral Disturbances in Children With Epilepsy. Journal of Child Neurology, 2010, 25, 182-187.	0.7	16
100	Ketogenic Diets: An Update for Child Neurologists. Journal of Child Neurology, 2009, 24, 979-988.	0.7	139
101	The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Research Reviews, 2009, 59, 293-315.	9.1	463
102	Arresting a Seizure by Dropping a Little Acid. Epilepsy Currents, 2009, 9, 55-56.	0.4	0
103	Optimal clinical management of children receiving the ketogenic diet: Recommendations of the International Ketogenic Diet Study Group. Epilepsia, 2009, 50, 304-317.	2.6	505
104	Ketogenic diet treatment abolishes seizure periodicity and improves diurnal rhythmicity in epileptic <i>Kcna1</i> å€null mice. Epilepsia, 2009, 50, 2027-2034.	2.6	73
105	Ketogenic Diets: Evidence for Short- and Long-term Efficacy. Neurotherapeutics, 2009, 6, 406-414.	2.1	90
106	Bicarbonate contributes to GABAA receptor-mediated neuronal excitation in surgically resected human hypothalamic hamartomas. Epilepsy Research, 2009, 83, 89-93.	0.8	26
107	Anticonvulsant effects of the selective melatonin receptor agonist ramelteon. Epilepsy and Behavior, 2009, 16, 52-57.	0.9	49
108	Fasting is neuroprotective following traumatic brain injury. Journal of Neuroscience Research, 2008, 86, 1812-1822.	1.3	152

#	Article	IF	Citations
109	Oxidative impairment of hippocampal longâ€term potentiation involves activation of protein phosphatase 2A and is prevented by ketone bodies. Journal of Neuroscience Research, 2008, 86, 3322-3330.	1.3	59
110	GABA _A receptorâ€mediated activation of Lâ€type calcium channels induces neuronal excitation in surgically resected human hypothalamic hamartomas. Epilepsia, 2008, 49, 861-871.	2.6	67
111	Can Reducing Sugar Retard Kindling?. Epilepsy Currents, 2008, 8, 83-84.	0.4	0
112	Electrophysiological Properties and Subunit Composition of GABAA Receptors in Patients With Gelastic Seizures and Hypothalamic Hamartoma. Journal of Neurophysiology, 2007, 98, 5-15.	0.9	23
113	Anticonvulsant Mechanisms of the Ketogenic Diet. Epilepsia, 2007, 48, 43-58.	2.6	411
114	Ketone bodies are protective against oxidative stress in neocortical neurons. Journal of Neurochemistry, 2007, 101, 1316-1326.	2.1	170
115	The Ketogenic Diet: Stoking the Powerhouse of the Cell. Epilepsy Currents, 2007, 7, 58-60.	0.4	9
116	Substantia(ting) Ketone Body Effects on Neuronal Excitability. Epilepsy Currents, 2007, 7, 142-144.	0.4	1
117	Hypothalamic Hamartoma: Basic Mechanisms of Intrinsic Epileptogenesis. Seminars in Pediatric Neurology, 2007, 14, 51-59.	1.0	89
118	Impaired Motor Control in Patients With Benign Focal Epilepsy of Childhood. Journal of Child Neurology, 2006, 21, 157-160.	0.7	6
119	Electrophysiological properties of human hypothalamic hamartomas. Annals of Neurology, 2005, 58, 371-382.	2.8	73
120	Clinical Experience With Zonisamide Monotherapy and Adjunctive Therapy in Children With Epilepsy at a Tertiary Care Referral Center. Journal of Child Neurology, 2005, 20, 212-219.	0.7	39
121	The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Annals of Neurology, 2004, 55, 576-580.	2.8	345
122	Molecular Biology and Ontogeny of Glutamate Receptors in the Mammalian Central Nervous System. Journal of Child Neurology, 2004, 19, 343-360.	0.7	93
123	A cDNA microarray analysis of gene expression profiles in rat hippocampus following a ketogenic diet. Molecular Brain Research, 2004, 129, 80-87.	2.5	69
124	Lack of long-term histopathologic changes in brain and skeletal muscle of mice treated with a ketogenic diet. Journal of Child Neurology, 2004, 19, 555-7.	0.7	5
125	Voltage-Dependent Block of N-Methyl-d-Aspartate Receptors by the Novel Anticonvulsant Dibenzylamine, a Bioactive Constituent of l-(+)-β-Hydroxybutyrate. Epilepsia, 2003, 44, 1274-1279.	2.6	25
126	Calorie Restriction and Ketogenic Diet Diminish Neuronal Excitability in Rat Dentate Gyrus In Vivo. Epilepsia, 2003, 44, 752-760.	2.6	127

#	Article	IF	CITATIONS
127	Intravenous Immunoglobulin as Adjunctive Therapy for Juvenile Spasms. Journal of Child Neurology, 2003, 18, 379-382.	0.7	14
128	Molecular Biology and Ontogeny of \hat{I}^3 -Aminobutyric Acid (GABA) Receptors in the Mammalian Central Nervous System. Journal of Child Neurology, 2003, 18, 39-48.	0.7	53
129	Age-Dependent Differences in Flurothyl-Induced c-fos and c-jun mRNA Expression in the Mouse Brain. Developmental Neuroscience, 2002, 24, 294-299.	1.0	8
130	Ictal EEG Patterns in Band Heterotopia. Epilepsia, 2002, 43, 403-407.	2.6	12
131	Acetoacetate, Acetone, and Dibenzylamine (a Contaminant in l- $(+)$ - \hat{l}^2 -Hydroxybutyrate) Exhibit Direct Anticonvulsant Actions in Vivo. Epilepsia, 2002, 43, 358-361.	2.6	153
132	Clinical and electrographic features of epileptic spasms persisting beyond the second year of life. Epilepsia, 2002, 43, 623-30.	2.6	12
133	Norepinephrine is required for the anticonvulsant effect of the ketogenic diet. Developmental Brain Research, 2001, 129, 211-214.	2.1	84
134	Molecular Ontogeny of Major Neurotransmitter Receptor Systems in the Mammalian Central Nervous System: Norepinephrine, Dopamine, Serotonin, Acetylcholine, and Glycine. Journal of Child Neurology, 2001, 16, 271.	0.7	5
135	Lamotrigine-Induced Tic Disorder: Report of Five Pediatric Cases. Epilepsia, 2000, 41, 862-867.	2.6	91
136	Age-dependent differences in flurothyl seizure sensitivity in mice treated with a ketogenic diet. Epilepsy Research, 1999, 37, 233-240.	0.8	91
137	The Pharmacologic Basis of Antiepileptic Drug Action. Epilepsia, 1999, 40, 1471-1483.	2.6	162
138	Developmental Seizure Susceptibility of Kv1.1 Potassium Channel Knockout Mice. Developmental Neuroscience, 1999, 21, 320-327.	1.0	106