List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2340338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fouling behaviour of polyethersulfone UF membranes made with different PVP. Journal of Membrane Science, 2003, 211, 1-11.	4.1	160
2	Pore size distributions based on AFM imaging and retention of multidisperse polymer solutes. Journal of Membrane Science, 2001, 187, 227-237.	4.1	153
3	Contact angles and external protein adsorption onto UF membranes. Journal of Membrane Science, 1999, 152, 189-201.	4.1	104
4	Porosity measurements by a gas penetration method and other techniques applied to membrane characterization. Thin Solid Films, 1999, 348, 22-29.	0.8	91
5	Application of a pore-blockage?Cake-filtration model to protein fouling during microfiltration. Biotechnology and Bioengineering, 2002, 79, 260-270.	1.7	72
6	Fouling with protein mixtures in microfiltration: BSA–lysozyme and BSA–pepsin. Journal of Membrane Science, 2003, 222, 41-51.	4.1	72
7	Sugar reduction in musts with nanofiltration membranes to obtain low alcohol-content wines. Separation and Purification Technology, 2010, 76, 158-170.	3.9	71
8	Gas separation of 6FDA–6FpDA membranesEffect of the solvent on polymer surfaces and permselectivity. Journal of Membrane Science, 2007, 293, 22-28.	4.1	68
9	Preparation and characterization of non-supported microfiltration membranes from aluminosilicates. Journal of Membrane Science, 2004, 241, 95-103.	4.1	67
10	Mass transfer and transport during purification of fructooligosaccharides by nanofiltration. Journal of Membrane Science, 2010, 365, 356-365.	4.1	62
11	Zeta potential of membranes as a function of pH Optimization of isoelectric point evaluation. Journal of Membrane Science, 2003, 213, 225-230.	4.1	57
12	Surface structure of microporous membranes by computerized SEM image analysis applied to Anopore filters. Journal of Membrane Science, 1997, 137, 89-97.	4.1	53
13	Multi-ionic nanofiltration of highly concentrated salt mixtures in the seawater range. Desalination, 2011, 277, 29-39.	4.0	51
14	Effect of Hydration of Polyamide Membranes on the Surface Electrokinetic Parameters: Surface Characterization by X-Ray Photoelectronic Spectroscopy and Atomic Force Microscopy. Journal of Colloid and Interface Science, 2002, 247, 149-158.	5.0	50
15	Fabrication and characterization of polyethersulfone nanocomposite membranes for the removal of endocrine disrupting micropollutants from wastewater. Mechanisms and performance. Journal of Membrane Science, 2015, 493, 66-79.	4.1	47
16	Protein Adsorption and Deposition onto Microfiltration Membranes: The Role of Solute–Solid Interactions. Journal of Colloid and Interface Science, 2000, 221, 254-261.	5.0	44
17	Liquid–liquid displacement porometry to estimate the molecular weight cut-off of ultrafiltration membranes. Desalination, 2011, 268, 174-181.	4.0	44
18	Mixed matrix membranes of 6FDA-6FpDA with surface functionalized Î ³ -alumina particles. An analysis of the improvement of permselectivity for several gas pairs. Chemical Engineering Science, 2010, 65, 2227-2235.	1.9	43

#	Article	IF	CITATIONS
19	AFM analysis of the surface of nanoporous membranes: application to the nanofiltration of potassium clavulanate. Journal of Materials Science, 2011, 46, 3356-3369.	1.7	43
20	Pore size analysis from retention of neutral solutes through nanofiltration membranes. The contribution of concentration–polarization. Desalination, 2014, 344, 1-11.	4.0	43
21	Pervaporation methodology for improving alcohol-free beer quality through aroma recovery. Journal of Food Engineering, 2014, 133, 1-8.	2.7	42
22	Ceramic membranes from Moroccan natural clay and phosphate for industrial water treatment. Desalination, 2009, 245, 501-507.	4.0	41
23	Ageing of polyethersulfone ultrafiltration membranes under long-term exposures to alkaline and acidic cleaning solutions. Chemical Engineering Science, 2015, 134, 178-195.	1.9	40
24	Characterisation of polymeric UF membranes by liquid–liquid displacement porosimetry. Journal of Membrane Science, 2010, 348, 238-244.	4.1	39
25	Thermally treated copoly(ether-imide)s made from bpda and alifatic plus aromatic diamines. GAS separation properties with different aromatic diamimes. Journal of Membrane Science, 2012, 387-388, 54-65.	4.1	36
26	New aromatic polyamides and polyimides having an adamantane bulky group. Materials Today Communications, 2015, 5, 23-31.	0.9	36
27	Modeling the influence of divalent ions on membrane resistance and electric power in reverse electrodialysis. Journal of Membrane Science, 2019, 592, 117385.	4.1	35
28	Morphology and structure of ABS membranes filled with two different activated carbons. Chemical Engineering Science, 2006, 61, 5448-5454.	1.9	34
29	Influence of low and high molecular weight compounds on the permeate flux decline in nanofiltration of red grape must. Desalination, 2013, 315, 124-134.	4.0	32
30	Evaluation of reverse osmosis and nanofiltration membranes performance in the permeation of organic solvents. Journal of Membrane Science, 2015, 492, 478-489.	4.1	31
31	Application of pervaporation and nanofiltration membrane processes for the elaboration of full flavored low alcohol white wines. Food and Bioproducts Processing, 2017, 101, 11-21.	1.8	31
32	Hydrofluoric acid treatment for improved performance of a nanofiltration membrane. Desalination, 2006, 191, 273-278.	4.0	30
33	Streaming potential through and on ultrafiltration membranes. Journal of Membrane Science, 2002, 206, 431-441.	4.1	29
34	Charge and dielectric characterization of nanofiltration membranes by impedance spectroscopy. Journal of Membrane Science, 2014, 454, 163-173.	4.1	29
35	Thermally rearranged polybenzoxazoles made from poly(ortho-hydroxyamide)s. Characterization and evaluation as gas separation membranes. Reactive and Functional Polymers, 2018, 127, 38-47.	2.0	29
36	Electrical characterization of NF membranes. A modified model with charge variation along the pores. Chemical Engineering Science, 2011, 66, 2898-2911.	1.9	28

#	Article	IF	CITATIONS
37	On the influence of the proportion of PEO in thermally controlled phase segregation of copoly(ether-imide)s for gas separation. Journal of Membrane Science, 2013, 434, 26-34.	4.1	27
38	Ultrafiltration membranes modified by PSS deposition and plasma treatment for Cr(VI) removal. Separation and Purification Technology, 2019, 210, 371-381.	3.9	27
39	Evaluation of several ultra- and nanofiltration membranes for sugar control in winemaking. Desalination, 2009, 245, 554-558.	4.0	26
40	Alcohol reduction in red and white wines by nanofiltration of musts before fermentation. Food and Bioproducts Processing, 2015, 96, 285-295.	1.8	26
41	Protein adsorption onto an inorganic microfiltration membrane. Journal of Membrane Science, 2002, 207, 199-207.	4.1	25
42	Physical properties of films made of copoly(ether-imide)s with long poly(ethylene oxide) segments. European Polymer Journal, 2010, 46, 2352-2364.	2.6	25
43	Alternative pore hindrance factors: What one should be used for nanofiltration modelization?. Desalination, 2009, 245, 606-613.	4.0	24
44	Advances in the design of co-poly(ether-imide) membranes for CO2 separations. Influence of aromatic rigidity on crystallinity, phase segregation and gas transport. European Polymer Journal, 2015, 62, 130-138.	2.6	24
45	Aroma recovery of beer flavors by pervaporation through polydimethylsiloxane membranes. Journal of Food Process Engineering, 2017, 40, e12556.	1.5	24
46	AFM characterization of the growth of MFI-type zeolite films on alumina substrates. Microporous and Mesoporous Materials, 2004, 71, 33-37.	2.2	22
47	Relevance of hindrance factors and hydrodynamic pressure gradient in the modelization of the transport of neutral solutes across nanofiltration membranes. Chemical Engineering Journal, 2009, 149, 78-86.	6.6	22
48	Selection of membranes for puriï $\neg \varepsilon$ ation of fructooligosaccharides. Desalination and Water Treatment, 2011, 27, 18-24.	1.0	22
49	Gas separation properties of systems with different amounts of long poly(ethylene oxide) segments for mixtures including carbon dioxide. International Journal of Greenhouse Gas Control, 2013, 12, 146-154.	2.3	22
50	Properties of polyethersulfone ultrafiltration membranes modified with polyethylene glycols. Polymer Engineering and Science, 2014, 54, 1211-1221.	1.5	21
51	Atomic force microscopy as a suitable technique for surface characterization of activated composite membranes for metal ion facilitated transport. Applied Physics A: Materials Science and Processing, 2006, 84, 277-284.	1.1	20
52	Comparison of the Volume Charge Density of Nanofiltration Membranes Obtained from Retention and Conductivity Experiments. Langmuir, 2010, 26, 11841-11849.	1.6	20
53	Analysis of the Grafting Process of PVP on a Silicon Surface by AFM and Contact Angle. Langmuir, 2011, 27, 11636-11649.	1.6	19
54	Fouling, structure and charges of a composite inorganic microfiltration membrane Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 138, 291-299.	2.3	18

#	Article	IF	CITATIONS
55	Prediction of gas permeability of block-segregated polymeric membranes by an effective medium model. Journal of Membrane Science, 2014, 453, 27-35.	4.1	18
56	Helium Recovery by Membrane Gas Separation Using Poly(<i>o</i> -acyloxyamide)s. Industrial & Engineering Chemistry Research, 2014, 53, 12809-12818.	1.8	18
57	Prediction of single salt rejection in nanofiltration membranes by independent measurements. Desalination, 2016, 382, 1-12.	4.0	18
58	Effect of phosphoric and hydrofluoric acid on the structure and permeation of a nanofiltration membrane. Journal of Membrane Science, 2006, 281, 177-185.	4.1	17
59	Liquid–liquid displacement porosimetry applied to several MF and UF membranes. Desalination, 2013, 327, 14-23.	4.0	17
60	Comparative study of red grape must nanofiltration: Laboratory and pilot plant scales. Food and Bioproducts Processing, 2015, 94, 610-620.	1.8	17
61	Functionalization of Î ³ -alumina cores by polyvinylpirrolidone: properties of the resulting biocompatible nanoparticles in aqueous suspension. Journal of Nanoparticle Research, 2009, 11, 341-354.	0.8	16
62	Influence of the PEO length in gas separation properties of segregating aromatic–aliphatic copoly(ether-imide)s. Chemical Engineering Science, 2013, 104, 574-585.	1.9	16
63	Thermally Segregated Copolymers with PPO Blocks for Nitrogen Removal from Natural Gas. Industrial & Engineering Chemistry Research, 2013, 52, 4312-4322.	1.8	16
64	Sugar reduction in white and red musts with nanofiltration membranes. Desalination and Water Treatment, 2011, 27, 167-174.	1.0	15
65	Phase Segregation and Gas Separation Properties of Thermally Treated Copoly(ether-imide) from an Aromatic Dianhydride, an Aromatic Diamine, and Various Aliphatic Diamines. Industrial & Engineering Chemistry Research, 2012, 51, 3766-3775.	1.8	15
66	Phase-contrast scanning force microscopy and chemical heterogeneity of GR polysulfone ultrafiltration membranes. Applied Physics A: Materials Science and Processing, 2001, 73, 555-560.	1.1	14
67	Purification and isolation of β-glucans from barley: Downstream process intensification. Chemical Engineering and Processing: Process Intensification, 2014, 84, 90-97.	1.8	14
68	Flux kinetics, limit and critical fluxes for low pressure dead-end microfiltration. The case of BSA filtration through a positively charged membrane. Chemical Engineering Science, 2015, 129, 58-68.	1.9	13
69	Impact of Must Sugar Reduction by Membrane Applications on Volatile Composition of Verdejo Wines. Journal of Agricultural and Food Chemistry, 2012, 60, 7050-7063.	2.4	12
70	Concentration-polarization in nanofiltration of low concentration Cr(VI) aqueous solutions. Effect of operative conditions on retention. Journal of Cleaner Production, 2017, 150, 243-252.	4.6	12
71	Partially pyrolized gas-separation membranes made from blends of copolyetherimides and polyimides. European Polymer Journal, 2018, 103, 390-399.	2.6	11
72	Dielectric properties of electrolyte solutions in polymeric nanofiltration membranes. Desalination and Water Treatment, 2011, 27, 25-30.	1.0	10

#	Article	IF	CITATIONS
73	Gas Separation by Mixed Matrix Membranes with Porous Organic Polymer Inclusions within o-Hydroxypolyamides Containing m-Terphenyl Moieties. Polymers, 2021, 13, 931.	2.0	10
74	Permeability and selectivity of 6FDA-6FpDA gas membranes prepared from different solvents. Desalination, 2006, 200, 225-226.	4.0	9
75	Polyacrylonitrile membranes modified with carbon nanotubes: characterization and micropollutants removal analysis. Desalination and Water Treatment, 2016, 57, 1344-1353.	1.0	9
76	Morphological, Electrical, and Chemical Characteristics of Poly(sodium 4-styrenesulfonate) Coated PVDF Ultrafiltration Membranes after Plasma Treatment. Polymers, 2019, 11, 1689.	2.0	9
77	Impedance spectroscopy and membrane potential analysis of microfiltration membranes. The influence of surface fractality. Chemical Engineering Science, 2018, 178, 27-38.	1.9	8
78	A Systematic Study of Ammonia Recovery from Anaerobic Digestate Using Membrane-Based Separation. Membranes, 2022, 12, 19.	1.4	7
79	Effect of dense CO2 on polymeric reverse osmosis and nanofiltration membranes and permeation of mixtures of macauba oil (Acrocomia aculeata) and CO2. Journal of Membrane Science, 2015, 481, 195-206.	4.1	6
80	Water viscosity in confined nanoporous media and flow through nanofiltration membranes. Microporous and Mesoporous Materials, 2020, 303, 110289.	2.2	6
81	Ecological Risk Evaluation and Removal of Emerging Pollutants in Urban Wastewater by a Hollow Fiber Forward Osmosis Membrane. Membranes, 2022, 12, 293.	1.4	6
82	Structural and functional study of two nanofiltration membranes. Desalination, 2006, 200, 354-355.	4.0	5
83	Reduction of Pb(II) in water to safe levels by a small tubular membrane nanofiltration plant. Clean Technologies and Environmental Policy, 2018, 20, 329-343.	2.1	5
84	Gas Permeability, Fractional Free Volume and Molecular Kinetic Diameters: The Effect of Thermal Rearrangement on ortho-hydroxy Polyamide Membranes Loaded with a Porous Polymer Network. Membranes, 2022, 12, 200.	1.4	5
85	Hydrogen Recovery by Mixed Matrix Membranes Made from 6FCl-APAF HPA with Different Contents of a Porous Polymer Network and Their Thermal Rearrangement. Polymers, 2021, 13, 4343.	2.0	4
86	Gas separation membranes obtained by partial pyrolysis of polyimides exhibiting polyethylene oxide moieties. Polymer, 2022, 247, 124789.	1.8	4
87	Membrane Dialysis for Partial Dealcoholization of White Wines. Membranes, 2022, 12, 468.	1.4	4
88	Effect of phosphoric and hydrofluoric acid on the charge density of a nanofiltration membrane. Desalination, 2006, 200, 361-363.	4.0	3
89	Setting up of a Method of Pervaporation for Improvingalcohol-Free Beer. Procedia Engineering, 2012, 44, 1005-1006.	1.2	3
90	Elimination of the Crystallinity of Long Polyethylene Oxideâ€Based Copolymers for Gas Separation Membranes by Using Electron Beam Irradiation. Macromolecular Chemistry and Physics, 2017, 218, 1600441.	1.1	3

#	ARTICLE	IF	CITATIONS
91	Environment and Material Science Technology for Anaerobic Digestion-Based Circular Bioeconomy. , 2021, , 25-55.		2
92	Improving the Permeation Properties by Plasma Surface Modification. Procedia Engineering, 2012, 44, 1353-1355.	1.2	1
93	Evaluation of Nanofiltration Membranes for Sugar Reduction in Red Grape Must. Procedia Engineering, 2012, 44, 1716-1717.	1.2	1
94	Fouling study of nanofiltration membranes for sugar control in grape must: Analysis of resistances and the role of osmotic pressure. Separation Science and Technology, 2016, 51, 525-541.	1.3	1
95	The passing of Miguel A. Mattea. Journal of Membrane Science, 2008, 321, 131.	4.1	0
96	Scanning Probe Microscopy Techniques in the Investigation of Homogeneous and Heterogeneous Dense Membranes: The Case for Gas Separtion Membranes. , 0, , 77-103.		0
97	Use of Nanofiltration Aromatic Polyamide Membranes. Case Study: Influence of Operating Conditions on the Rejection of Pb (II) in Aqueous Solutions at Industrial Pilot Plant. Procedia Engineering, 2012, 44, 2023-2025.	1.2	0
98	Influence of Annealing Temperature in Permeation and Plasticization Resistance for Samples Containing Carboxylic Acid. Procedia Engineering, 2012, 44, 175-176.	1.2	0
99	Prediction of Single Salt Rejection in Nanofiltration Membranes. Procedia Engineering, 2012, 44, 1858.	1.2	0
100	Electrostatic interactions as governing the fouling in protein microfiltration. European Physical Journal Special Topics, 2005, 123, 371-375.	0.2	0