List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/23398/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | ALPACA - a level-set based sharp-interface multiresolution solver for conservation laws. Computer Physics Communications, 2022, 272, 108246.                                                                              | 3.0 | 15        |
| 2  | A parallel modular computing environment for three-dimensional multiresolution simulations of compressible flows. Computer Methods in Applied Mechanics and Engineering, 2022, 391, 114486.                               | 3.4 | 10        |
| 3  | Stochastic multi-fidelity surrogate modeling of dendritic crystal growth. Computer Methods in Applied Mechanics and Engineering, 2022, 393, 114799.                                                                       | 3.4 | 1         |
| 4  | Numerical prediction of erosion due to a cavitating jet. Wear, 2022, 498-499, 204304.                                                                                                                                     | 1.5 | 3         |
| 5  | A low-dissipation shock-capturing framework with flexible nonlinear dissipation control. Journal of Computational Physics, 2021, 428, 109960.                                                                             | 1.9 | 15        |
| 6  | Mesoscopic Lattice Boltzmann Modeling of the Liquid-Vapor Phase Transition. Physical Review Letters, 2021, 126, 244501.                                                                                                   | 2.9 | 29        |
| 7  | Inferring incompressible two-phase flow fields from the interface motion using physics-informed neural networks. Machine Learning With Applications, 2021, 4, 100029.                                                     | 3.0 | 6         |
| 8  | Numerical investigation of non-condensable gas effect on vapor bubble collapse. Physics of Fluids, 2021, 33, .                                                                                                            | 1.6 | 30        |
| 9  | A multiresolution local-timestepping scheme for particle–laden multiphase flow simulations using a<br>level-set and point-particle approach. Computer Methods in Applied Mechanics and Engineering, 2021,<br>384, 113966. | 3.4 | 4         |
| 10 | Experimental investigation of droplet breakup of oxide-forming liquid metals. Physics of Fluids, 2021, 33, .                                                                                                              | 1.6 | 7         |
| 11 | A low dissipation method to cure the grid-aligned shock instability. Journal of Computational Physics, 2020, 401, 109004.                                                                                                 | 1.9 | 31        |
| 12 | Near-surface dynamics of a gas bubble collapsing above a crevice. Journal of Fluid Mechanics, 2020,<br>899, .                                                                                                             | 1.4 | 52        |
| 13 | On an inconsistency of the arithmetic-average signal speed estimate for HLL-type Riemann solvers.<br>Journal of Computational Physics: X, 2020, 8, 100077.                                                                | 1.1 | 1         |
| 14 | A shock-stable modification of the HLLC Riemann solver with reduced numerical dissipation. Journal of Computational Physics, 2020, 423, 109762.                                                                           | 1.9 | 34        |
| 15 | Sparse identification of truncation errors. Journal of Computational Physics, 2019, 397, 108851.                                                                                                                          | 1.9 | 20        |
| 16 | An adaptive local time-stepping scheme for multiresolution simulations of hyperbolic conservation laws. Journal of Computational Physics: X, 2019, 4, 100038.                                                             | 1.1 | 8         |
| 17 | Density gradient calculation in a class of multiphase lattice Boltzmann models. Physical Review E, 2019, 100, 043306.                                                                                                     | 0.8 | 8         |
| 18 | Partial characteristic decomposition for multi-species Euler equations. Computers and Fluids, 2019, 181, 364-382.                                                                                                         | 1.3 | 6         |

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Lattice Boltzmann model with self-tuning equation of state for multiphase flows. Physical Review E, 2019, 99, 023303.                                                            | 0.8 | 19        |
| 20 | A weakly compressible SPH method with WENO reconstruction. Journal of Computational Physics, 2019, 392, 1-18.                                                                    | 1.9 | 43        |
| 21 | Lattice Boltzmann model with adjustable equation of state for coupled thermo-hydrodynamic flows.<br>Journal of Computational Physics, 2019, 392, 227-247.                        | 1.9 | 12        |
| 22 | A split random time-stepping method for stiff and nonstiff detonation capturing. Combustion and Flame, 2019, 204, 397-413.                                                       | 2.8 | 6         |
| 23 | A new multi-resolution parallel framework for SPH. Computer Methods in Applied Mechanics and Engineering, 2019, 346, 1156-1178.                                                  | 3.4 | 36        |
| 24 | A conservative interface-interaction method for compressible multi-material flows. Journal of Computational Physics, 2018, 371, 870-895.                                         | 1.9 | 23        |
| 25 | Eliminating cubic terms in the pseudopotential lattice Boltzmann model for multiphase flow. Physical<br>Review E, 2018, 97, 053308.                                              | 0.8 | 28        |
| 26 | Large-Eddy Simulation of turbulent, cavitating fuel flow inside a 9-hole Diesel injector including needle movement. International Journal of Engine Research, 2017, 18, 195-211. | 1.4 | 43        |
| 27 | A weakly compressible SPH method based on a low-dissipation Riemann solver. Journal of Computational Physics, 2017, 335, 605-620.                                                | 1.9 | 119       |
| 28 | A physics-motivated Centroidal Voronoi Particle domain decomposition method. Journal of Computational Physics, 2017, 335, 718-735.                                               | 1.9 | 15        |
| 29 | A generalized transport-velocity formulation for smoothed particle hydrodynamics. Journal of Computational Physics, 2017, 337, 216-232.                                          | 1.9 | 68        |
| 30 | Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws. Journal of Computational Physics, 2017, 349, 97-121.                                    | 1.9 | 85        |
| 31 | A novel partitioning method for block-structured adaptive meshes. Journal of Computational Physics, 2017, 341, 447-473.                                                          | 1.9 | 13        |
| 32 | Wall Modeled Large Eddy Simulation of a Delta Wing with Round Leading Edge. Notes on Numerical<br>Fluid Mechanics and Multidisciplinary Design, 2016, , 607-616.                 | 0.2 | 0         |
| 33 | Curvature boundary condition for a moving contact line. Journal of Computational Physics, 2016, 310, 329-341.                                                                    | 1.9 | 19        |
| 34 | Optimization of an Implicit Large-Eddy Simulation Method for Underresolved Incompressible Flow Simulations. AIAA Journal, 2016, 54, 1567-1577.                                   | 1.5 | 7         |
| 35 | Efficient implicit LES method for the simulation of turbulent cavitating flows. Journal of Computational Physics, 2016, 316, 453-469.                                            | 1.9 | 50        |
| 36 | Shock Mach number influence on reaction wave types and mixing in reactive shock–bubble interaction. Combustion and Flame, 2016, 174, 85-99.                                      | 2.8 | 32        |

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A conservative interface-interaction model with insoluble surfactant. Journal of Computational Physics, 2016, 327, 653-677.                                                     | 1.9 | 3         |
| 38 | On the convergence of the weakly compressible sharp-interface method for two-phase flows. Journal of Computational Physics, 2016, 324, 94-114.                                  | 1.9 | 6         |
| 39 | A cut-cell finite volume – finite element coupling approach for fluid–structure interaction in compressible flow. Journal of Computational Physics, 2016, 307, 670-695.         | 1.9 | 51        |
| 40 | Determination of macroscopic transport coefficients of a dissipative particle dynamics solvent.<br>Physical Review E, 2016, 93, 013302.                                         | 0.8 | 4         |
| 41 | On the pressure dependence of ignition and mixing in two-dimensional reactive shock-bubble interaction. Combustion and Flame, 2016, 163, 414-426.                               | 2.8 | 25        |
| 42 | Numerical methods for the weakly compressible Generalized Langevin Model in Eulerian reference<br>frame. Journal of Computational Physics, 2016, 314, 93-106.                   | 1.9 | 5         |
| 43 | Efficient formulation of scale separation for multi-scale modeling of interfacial flows. Journal of Computational Physics, 2016, 308, 411-420.                                  | 1.9 | 11        |
| 44 | A family of high-order targeted ENO schemes for compressible-fluid simulations. Journal of Computational Physics, 2016, 305, 333-359.                                           | 1.9 | 218       |
| 45 | Validation of a Flow Simulation for a Helicopter Fuselage Including a Rotating Rotor Head. Notes on<br>Numerical Fluid Mechanics and Multidisciplinary Design, 2016, , 303-313. | 0.2 | 2         |
| 46 | Cavitation erosion prediction based on analysis of flow dynamics and impact load spectra. Physics of<br>Fluids, 2015, 27, .                                                     | 1.6 | 62        |
| 47 | Large-eddy simulation of cavitating nozzle flow and primary jet break-up. Physics of Fluids, 2015, 27, .                                                                        | 1.6 | 71        |
| 48 | On instationary mechanisms in cavitating micro throttles. Journal of Physics: Conference Series, 2015, 656, 012079.                                                             | 0.3 | 2         |
| 49 | A SPH Model for Incompressible Turbulence. Procedia IUTAM, 2015, 18, 66-75.                                                                                                     | 1.2 | 12        |
| 50 | Large-eddy simulation of cavitating nozzle and jet flows. Journal of Physics: Conference Series, 2015,<br>656, 012096.                                                          | 0.3 | 1         |
| 51 | LES of cavitating flow inside a Diesel injector including dynamic needle movement. Journal of Physics:<br>Conference Series, 2015, 656, 012097.                                 | 0.3 | 6         |
| 52 | Numerical investigation of shedding partial cavities over a sharp wedge. Journal of Physics:<br>Conference Series, 2015, 656, 012122.                                           | 0.3 | 1         |
| 53 | A conservative sharp interface method for incompressible multiphase flows. Journal of<br>Computational Physics, 2015, 284, 547-565.                                             | 1.9 | 41        |
| 54 | Assessing the numerical dissipation rate and viscosity in numerical simulations of fluid flows.<br>Computers and Fluids, 2015, 114, 84-97.                                      | 1.3 | 41        |

NIKOLAUS A. ADAMS

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Towards consistence and convergence of conservative SPH approximations. Journal of Computational Physics, 2015, 301, 394-401.                                                     | 1.9 | 32        |
| 56 | An efficient low-dissipation hybrid weighted essentially non-oscillatory scheme. Journal of Computational Physics, 2015, 301, 415-424.                                            | 1.9 | 36        |
| 57 | Cut-element based immersed boundary method for moving geometries in compressible liquid flows with cavitation. Journal of Computational Physics, 2015, 283, 1-22.                 | 1.9 | 35        |
| 58 | Scale separation for multi-scale modeling of free-surface and two-phase flows with the conservative sharp interface method. Journal of Computational Physics, 2015, 280, 387-403. | 1.9 | 17        |
| 59 | Evolution of length scales and statistics of Richtmyer-Meshkov instability from direct numerical simulations. Physical Review E, 2014, 90, 063001.                                | 0.8 | 34        |
| 60 | Experimental and Numerical Study of Heat Transfer at the Underbody of a Production Car. SAE<br>International Journal of Commercial Vehicles, 2014, 7, 89-101.                     | 0.4 | 6         |
| 61 | Mesoscopic simulation of the transient behavior of semi-diluted polymer solution in a microchannel following extensional flow. Microfluidics and Nanofluidics, 2014, 16, 257-264. | 1.0 | 9         |
| 62 | Wall modeling for implicit large-eddy simulation and immersed-interface methods. Theoretical and Computational Fluid Dynamics, 2014, 28, 1-21.                                    | 0.9 | 42        |
| 63 | Quantification of initial-data uncertainty on a shock-accelerated gas cylinder. Physics of Fluids, 2014, 26, 026101.                                                              | 1.6 | 12        |
| 64 | Numerical and experimental investigations of pseudo-shock systems in a planar nozzle: impact of bypass mass flow due to narrow gaps. Shock Waves, 2014, 24, 139-156.              | 1.0 | 15        |
| 65 | Large-eddy simulation of turbulent cavitating flow in a micro channel. Physics of Fluids, 2014, 26, .                                                                             | 1.6 | 87        |
| 66 | Adaptive multi-resolution method for compressible multi-phase flows with sharp interface model and pyramid data structure. Journal of Computational Physics, 2014, 262, 131-152.  | 1.9 | 49        |
| 67 | Large-eddy simulation of passive shock-wave/boundary-layer interaction control. International<br>Journal of Heat and Fluid Flow, 2014, 49, 116-127.                               | 1.1 | 74        |
| 68 | Large-eddy simulation of a pseudo-shock system in a Laval nozzle. International Journal of Heat and<br>Fluid Flow, 2014, 49, 108-115.                                             | 1.1 | 23        |
| 69 | On the Richtmyer–Meshkov instability evolving from a deterministic multimode planar interface.<br>Journal of Fluid Mechanics, 2014, 755, 429-462.                                 | 1.4 | 91        |
| 70 | Large-eddy simulation of a supersonic turbulent boundary layer over a compression–expansion ramp.<br>International Journal of Heat and Fluid Flow, 2013, 42, 79-93.               | 1.1 | 57        |
| 71 | A physically consistent weakly compressible high-resolution approach to underresolved simulations of incompressible flows. Computers and Fluids, 2013, 86, 109-124.               | 1.3 | 17        |
| 72 | 11 PFLOP/s simulations of cloud cavitation collapse. , 2013, , .                                                                                                                  |     | 38        |

NIKOLAUS A. ADAMS

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Positivity-preserving method for high-order conservative schemes solving compressible Euler equations. Journal of Computational Physics, 2013, 242, 169-180.                     | 1.9 | 163       |
| 74 | Interference effects of cooling airflows on a generic car body. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 119, 146-157.                                     | 1.7 | 7         |
| 75 | A transport-velocity formulation for smoothed particle hydrodynamics. Journal of Computational Physics, 2013, 241, 292-307.                                                      | 1.9 | 156       |
| 76 | Analysis of interpolation schemes for the accurate estimation of energy spectrum in Lagrangian methods. Computers and Fluids, 2013, 82, 122-131.                                 | 1.3 | 7         |
| 77 | Numerical simulation of a Richtmyer–Meshkov instability with an adaptive central-upwind sixth-order<br>WENO scheme. Physica Scripta, 2013, T155, 014016.                         | 1.2 | 15        |
| 78 | On the Kolmogorov inertial subrange developing from Richtmyer-Meshkov instability. Physics of<br>Fluids, 2013, 25, .                                                             | 1.6 | 26        |
| 79 | LES of Turbulent Cavitating Shear Layers. , 2013, , 349-359.                                                                                                                     |     | 1         |
| 80 | Numerical investigation of collapsing cavity arrays. Physics of Fluids, 2012, 24, .                                                                                              | 1.6 | 61        |
| 81 | Analysis of intermittency in under-resolved smoothed-particle-hydrodynamics direct numerical simulations of forced compressible turbulence. Physical Review E, 2012, 85, 036708. | 0.8 | 4         |
| 82 | The Interior Design of a 40% Scaled DrivAer Body and First Experimental Results. , 2012, , .                                                                                     |     | 21        |
| 83 | Experimental and Numerical Investigation of the DrivAer Model. , 2012, , .                                                                                                       |     | 39        |
| 84 | Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction. Journal of Fluid<br>Mechanics, 2012, 700, 16-28.                                               | 1.4 | 167       |
| 85 | A generalized wall boundary condition for smoothed particle hydrodynamics. Journal of Computational Physics, 2012, 231, 7057-7075.                                               | 1.9 | 532       |
| 86 | Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics. Physics of<br>Fluids, 2012, 24, .                                                     | 1.6 | 92        |
| 87 | Aerodynamic Investigations of a Morphing Membrane Wing. AIAA Journal, 2012, 50, 2588-2599.                                                                                       | 1.5 | 19        |
| 88 | Numerical Analysis of a Rotating Cylinder with Spanwise Disks. AIAA Journal, 2012, 50, 271-283.                                                                                  | 1.5 | 11        |
| 89 | Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics.<br>Computers and Fluids, 2012, 69, 1-19.                                           | 1.3 | 140       |
| 90 | The Ground Simulation Upgrade of the Large Wind Tunnel at the Technische UniversitäMünchen. ,<br>2012, , .                                                                       |     | 10        |

| #   | Article                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Anti-diffusion interface sharpening technique for two-phase compressible flow simulations. Journal of Computational Physics, 2012, 231, 4304-4323.                                           | 1.9 | 102       |
| 92  | Wall Modelling for Implicit Large Eddy Simulation of Favourable and Adverse Pressure Gradient Flows. ERCOFTAC Series, 2011, , 337-346.                                                       | 0.1 | 1         |
| 93  | Numerical Investigation of Inlet Distortion on a Wing-Embedded Lift Fan. Journal of Propulsion and Power, 2011, 27, 16-28.                                                                   | 1.3 | 9         |
| 94  | Large-Eddy Simulations of Turbulence Enhancement due to Forced Shock Motion in Shock-Boundary<br>Layer Interaction. , 2011, , .                                                              |     | 3         |
| 95  | Comparison of Numerical Simulations with Experiments of Bluff Bodies Including Under-Hood Flow. , 2011, , .                                                                                  |     | 11        |
| 96  | Scale separation for implicit large eddy simulation. Journal of Computational Physics, 2011, 230, 7240-7249.                                                                                 | 1.9 | 72        |
| 97  | Wavelet-based adaptive multi-resolution solver on heterogeneous parallel architecture for computational fluid dynamics. Computer Science - Research and Development, 2011, 26, 197-203.      | 2.7 | 8         |
| 98  | Anti-diffusion method for interface steepening in two-phase incompressible flow. Journal of Computational Physics, 2011, 230, 5155-5177.                                                     | 1.9 | 56        |
| 99  | SPH simulations of flow around a periodic array of cylinders confined in a channel. International<br>Journal for Numerical Methods in Engineering, 2011, 86, 1027-1040.                      | 1.5 | 50        |
| 100 | A stochastic extension of the approximate deconvolution model. Physics of Fluids, 2011, 23, .                                                                                                | 1.6 | 11        |
| 101 | Numerical simulation of tethered DNA in shear flow. Journal of Physics Condensed Matter, 2011, 23, 184118.                                                                                   | 0.7 | 14        |
| 102 | Integrated Experimental-Numerical Analysis of High-Agility Aircraft Wake Vortex Evolution. Journal of<br>Aircraft, 2011, 48, 2050-2058.                                                      | 1.7 | 6         |
| 103 | A conservative SPH method for surfactant dynamics. Journal of Computational Physics, 2010, 229, 1909-1926.                                                                                   | 1.9 | 64        |
| 104 | A conservative immersed interface method for Large-Eddy Simulation of incompressible flows. Journal of Computational Physics, 2010, 229, 6300-6317.                                          | 1.9 | 97        |
| 105 | Letter to the Editor: On the evolution of dissipation rate and resolved kinetic energy in ALDM simulations of the Taylor–Green flow. Journal of Computational Physics, 2010, 229, 2422-2423. | 1.9 | 2         |
| 106 | A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. Journal of Computational Physics, 2010, 229, 5011-5021.                                  | 1.9 | 218       |
| 107 | A splitting scheme for highly dissipative smoothed particle dynamics. Journal of Computational Physics, 2010, 229, 5457-5464.                                                                | 1.9 | 35        |
| 108 | An adaptive central-upwind weighted essentially non-oscillatory scheme. Journal of Computational Physics, 2010, 229, 8952-8965.                                                              | 1.9 | 249       |

| #   | Article                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Assessment of Implicit Large-Eddy Simulation with a Conservative Immersed Interface Method for turbulent cylinder flow. International Journal of Heat and Fluid Flow, 2010, 31, 368-377. | 1.1 | 65        |
| 110 | Numerical analysis of design parameters for a generic fan-in-wing configuration. Aerospace Science and Technology, 2010, 14, 65-77.                                                      | 2.5 | 10        |
| 111 | Implicit atomistic viscosities in smoothed particle hydrodynamics. Physical Review E, 2010, 82, 046702.                                                                                  | 0.8 | 17        |
| 112 | Particle-layering effect in wall-bounded dissipative particle dynamics. Physical Review E, 2010, 82, 066704.                                                                             | 0.8 | 11        |
| 113 | The Influence of Magnetic Fields on the Rise of Gas Bubbles in Electrically Conductive Liquids.<br>ERCOFTAC Series, 2010, , 465-471.                                                     | 0.1 | 6         |
| 114 | Computational Aspects of Implicit LES ofÂComplex Flows. , 2010, , 133-146.                                                                                                               |     | 1         |
| 115 | Implicit LES of Passive-Scalar Mixing in a Confined Rectangular-Jet Reactor. , 2010, , 299-310.                                                                                          |     | 0         |
| 116 | Aerodynamic Analysis of a Helicopter Fuselage. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2010, , 603-610.                                                         | 0.2 | 0         |
| 117 | An Immersed Interface Method in the Framework of Implicit Large-Eddy Simulation. ERCOFTAC Series, 2010, , 109-115.                                                                       | 0.1 | Ο         |
| 118 | Turbulence and Shear Flow Phenomena-5 Symposium. Journal of Turbulence, 2009, 10, N37.                                                                                                   | 0.5 | 0         |
| 119 | Numerical and Experimental Analysis of a Generic Fan-in-Wing Configuration. Journal of Aircraft, 2009, 46, 656-666.                                                                      | 1.7 | 23        |
| 120 | Self-diffusion coefficient in smoothed dissipative particle dynamics. Journal of Chemical Physics, 2009, 130, 021101.                                                                    | 1.2 | 38        |
| 121 | Numerical investigation of rising bubble wake and shape variations. Physics of Fluids, 2009, 21, .                                                                                       | 1.6 | 45        |
| 122 | Implementation of aÂLattice–Boltzmann method for numerical fluid mechanics using the nVIDIA CUDA technology. Computer Science - Research and Development, 2009, 23, 241-247.             | 2.7 | 29        |
| 123 | A constant-density approach for incompressible multi-phase SPH. Journal of Computational Physics, 2009, 228, 2082-2091.                                                                  | 1.9 | 106       |
| 124 | On the HLLC Riemann solver for interface interaction in compressible multi-fluid flow. Journal of Computational Physics, 2009, 228, 6572-6589.                                           | 1.9 | 86        |
| 125 | Supersonic and Hypersonic Boundary-Layer Flows. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2009, , 77-91.                                                          | 0.2 | 3         |
| 126 | Implicit Large-Eddy Simulation: Theory and Application. Springer Proceedings in Physics, 2009, , 743-750.                                                                                | 0.1 | 11        |

| #   | Article                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Moving Contact Line with Balanced Stress Singularities. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2009, , 87-94.                                      | 0.1 | 0         |
| 128 | Splitting for Highly Dissipative Smoothed Particle Dynamics. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2009, , 207-218.                               | 0.1 | 0         |
| 129 | On improving mass-conservation properties of the hybrid particle-level-set method. Computers and Fluids, 2008, 37, 1320-1331.                                            | 1.3 | 21        |
| 130 | Implicit LES applied to zero-pressure-gradient and adverse-pressure-gradient boundary-layer turbulence. International Journal of Heat and Fluid Flow, 2008, 29, 626-639. | 1.1 | 33        |
| 131 | Implicit large-eddy simulation applied to turbulent channel flow with periodic constrictions.<br>Theoretical and Computational Fluid Dynamics, 2008, 22, 227-242.        | 0.9 | 29        |
| 132 | Special issue on large-eddy simulation of complex flows. Theoretical and Computational Fluid Dynamics, 2008, 22, 155-155.                                                | 0.9 | 0         |
| 133 | Smoothed dissipative particle dynamics model for polymer molecules in suspension. Physical Review E, 2008, 77, 066703.                                                   | 0.8 | 55        |
| 134 | On Implementing the Hybrid Particle-Level-Set Method on Supercomputers for Two-Phase Flow<br>Simulations. , 2008, , 445-456.                                             |     | 0         |
| 135 | On implicit subgrid-scale modeling in wall-bounded flows. Physics of Fluids, 2007, 19, .                                                                                 | 1.6 | 53        |
| 136 | Implicit subgrid-scale modeling for large-eddy simulation of passive-scalar mixing. Physics of Fluids, 2007, 19, .                                                       | 1.6 | 40        |
| 137 | An incompressible multi-phase SPH method. Journal of Computational Physics, 2007, 227, 264-278.                                                                          | 1.9 | 388       |
| 138 | Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction. Journal of Fluid<br>Mechanics, 2006, 565, 135.                                                 | 1.4 | 190       |
| 139 | An adaptive local deconvolution method for implicit LES. Journal of Computational Physics, 2006, 213, 413-436.                                                           | 1.9 | 220       |
| 140 | A multi-phase SPH method for macroscopic and mesoscopic flows. Journal of Computational Physics, 2006, 213, 844-861.                                                     | 1.9 | 537       |
| 141 | A conservative interface method for compressible flows. Journal of Computational Physics, 2006, 219, 553-578.                                                            | 1.9 | 198       |
| 142 | Angular-momentum conservative smoothed particle dynamics for incompressible viscous flows.<br>Physics of Fluids, 2006, 18, 101702.                                       | 1.6 | 65        |
| 143 | A windowing method for periodic inflow/outflow boundary treatment of non-periodic flows.<br>Journal of Computational Physics, 2005, 206, 505-535.                        | 1.9 | 36        |
| 144 | An asymptotically stable compact upwind-biased finite-difference scheme for hyperbolic systems.<br>Journal of Computational Physics, 2005, 208, 435-454.                 | 1.9 | 4         |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Analysis of flow in a cone-and-plate apparatus with respect to spatial and temporal effects on endothelial cells. Biotechnology and Bioengineering, 2005, 89, 493-502.                              | 1.7 | 75        |
| 146 | Implicit subgrid-scale modeling by adaptive deconvolution. Journal of Computational Physics, 2004, 200, 412-431.                                                                                    | 1.9 | 82        |
| 147 | Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique. Physics of Fluids, 2003, 15, 2398-2412. | 1.6 | 112       |
| 148 | The Approximate Deconvolution Model for Large-Eddy Simulation of Compressible Flows With Finite Volume Schemes. Journal of Fluids Engineering, Transactions of the ASME, 2002, 124, 829-835.        | 0.8 | 6         |
| 149 | A Subgrid-Scale Deconvolution Approach for Shock Capturing. Journal of Computational Physics, 2002, 178, 391-426.                                                                                   | 1.9 | 91        |
| 150 | The use of LES subgrid-scale models for shock capturing. International Journal for Numerical Methods in Fluids, 2002, 39, 783-797.                                                                  | 0.9 | 5         |
| 151 | Direct numerical simulation of a transitional rectangular jet. International Journal of Heat and Fluid<br>Flow, 2002, 23, 547-553.                                                                  | 1.1 | 32        |
| 152 | The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction. Physics of Fluids, 2001, 13, 2985-3001.     | 1.6 | 225       |
| 153 | Direct simulation of turbulent supersonic boundary layers by an extended temporal approach. Journal of Fluid Mechanics, 2001, 429, 187-216.                                                         | 1.4 | 156       |
| 154 | On Taylor-series expansions of residual stress. Physics of Fluids, 2001, 13, 2578-2589.                                                                                                             | 1.6 | 23        |
| 155 | An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Physics of Fluids, 2001, 13, 997-1015.                                          | 1.6 | 433       |
| 156 | A priorianalyses of three subgrid-scale models for one-parameter families of filters. Physics of Fluids, 2000, 12, 1133-1142.                                                                       | 1.6 | 26        |
| 157 | Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and ReÎ, = 1685.<br>Journal of Fluid Mechanics, 2000, 420, 47-83.                                               | 1.4 | 259       |
| 158 | An approximate deconvolution procedure for large-eddy simulation. Physics of Fluids, 1999, 11, 1699-1701.                                                                                           | 1.6 | 603       |
| 159 | Direct Numerical Simulation of Turbulent Compression Ramp Flow. Theoretical and Computational Fluid Dynamics, 1998, 12, 109-129.                                                                    | 0.9 | 109       |
| 160 | Subharmonic transition to turbulence in a flat-plate boundary layer at Mach number 4.5. Journal of<br>Fluid Mechanics, 1996, 317, 301-335.                                                          | 1.4 | 46        |
| 161 | A High-Resolution Hybrid Compact-ENO Scheme for Shock-Turbulence Interaction Problems. Journal of Computational Physics, 1996, 127, 27-51.                                                          | 1.9 | 422       |
| 162 | Comparison of temporal and spatial direct numerical simulation of compressible boundary-layer transition. AIAA Journal, 1996, 34, 683-690.                                                          | 1.5 | 28        |

20

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Direct simulation of breakdown to turbulence following oblique instability waves in a supersonic boundary layer. Flow, Turbulence and Combustion, 1995, 54, 223-234.                | 0.2 | 30        |
| 164 | Modeling of nonparallel effects in temporal direct numerical simulations of compressible boundary-layer transition. Theoretical and Computational Fluid Dynamics, 1995, 7, 141-157. | 0.9 | 14        |
| 165 | Numerical simulation of boundary-layer transition at Mach two. Flow, Turbulence and Combustion, 1993, 51, 371-375.                                                                  | 0.2 | 17        |
| 166 | A New Approach to Analyzing Cooling and Interference Drag. SAE International Journal of Passenger<br>Cars - Mechanical Systems, 0, 3, 339-351.                                      | 0.4 | 15        |
| 167 | Experimental Investigation of Unsteady Vehicle Aerodynamics under Time-Dependent Flow Conditions -<br>Part 1. , 0, , .                                                              |     | 35        |
| 168 | Experimental Investigation of Unsteady Vehicle Aerodynamics under Time-Dependent Flow Conditions -<br>Part2. , 0, , .                                                               |     | 27        |
| 169 | Study on the Capability of an Open Source CFD Software for Unsteady Vehicle Aerodynamics. SAE<br>International Journal of Commercial Vehicles, 0, 5, 196-207.                       | 0.4 | 6         |
| 170 | Experimental and Numerical Investigation of the Under Hood Flow with Heat Transfer for a Scaled Tractor-Trailer. SAE International Journal of Commercial Vehicles, 0, 5, 42-56.     | 0.4 | 12        |
| 171 | Introduction of a New Realistic Generic Car Model for Aerodynamic Investigations. , 0, , .                                                                                          |     | 139       |
|     |                                                                                                                                                                                     |     |           |

Aerodynamic Investigation of Vehicle Cooling-Drag. , 0, , .