Ian L Turner

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/2339242/publications.pdf
Version: 2024-02-01

1 Beach-face slope dataset for Australia. Earth System Science Data, 2022, 14, 1345-1357. 3.7
â€ Coastal Management Guide - Managing Coastal Erosionâ€ ${ }^{\text {TM }}$: A STEM education resource for secondary school teachers. Continental Shelf Research, 2022, 244, 104783.
0.93

2

A new approach for scaling beach profile evolution and sediment transport rates in distorted
1.7
laboratory models. Coastal Engineering, 2021, 163, 103794.

High-resolution, large-scale laboratory measurements of a sandy beach and dynamic cobble berm revetment. Scientific Data, 2021, 8, 22.

Wastewater effluents cause microbial community shifts and change trophic status. Water Research, 2021, 200, 117206.
5.3

6 Satellite optical imagery in Coastal Engineering. Coastal Engineering, 2021, 167, 103919.
1.7

52

7 Bathymetric Data Requirements for Operational Coastal Erosion Forecasting Using XBeach. Journal of
$7 \quad$ Marine Science and Engineering, 2021, 9, 1053.

8 A storm hazard matrix combining coastal flooding and beach erosion. Coastal Engineering, 2021, 170,
$8 \quad 104001$.

915 Priorities for Wind-Waves Research: An Australian Perspective. Bulletin of the American
9 Meteorological Society, 2020, 101, E446-E461.

10 A novel real-world ecotoxicological dataset of pelagic microbial community responses to wastewater. Scientific Data, 2020, 7, 158.

11 Enhanced Coastal Shoreline Modeling Using an Ensemble Kalman Filter to Include Nonstationarity in
Future Wave Climates. Geophysical Research Letters, 2020, 47, e2020GL090724.

12 Beach Slopes From Satelliteâ€Derived Shorelines. Geophysical Research Letters, 2020, 47, e2020GL088365.
1.5

67

Beach Profile Changes under Sea Level Rise in Laboratory Flume Experiments at Different Scale.
Journal of Coastal Research, 2020, 95, 192.

Priorities for Wind-Waves Research. Bulletin of the American Meteorological Society, 2020, 101, 505-507.
1.7

1

Controls of Variability in Berm and Dune Storm Erosion. Journal of Geophysical Research F: Earth
Surface, 2019, 124, 2647-2665.
1.0

25

Direct Measurements of Bed Shear Stress under Swash Flows on Steep Laboratory Slopes at Medium to Prototype Scales. Journal of Marine Science and Engineering, 2019, 7, 358.
1.2

CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available
satellite imagery. Environmental Modelling and Software, 2019, 122, 104528.
1.9

242

19 Calibration data requirements for modelling subaerial beach storm erosion. Coastal Engineering,
$2019,152,103507$.

Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery. Coastal Engineering, 2019, 150, 160-174.

Modes of Berm and Beachface Recovery Following Storm Reset: Observations Using a Continuously
Scanning Lidar. Journal of Geophysical Research F: Earth Surface, 2019, 124, 720-736.

Surface-groundwater flow numerical model for barrier beach with exfiltration incorporated bottom boundary layer model. Coastal Engineering, 2019, 146, 47-64.

TIME-SERIES OF SHORELINE CHANGE FROM PUBLICLY AVAILABLE SATELLITE IMAGERY., 2019, , .

Physical model study of beach profile evolution by sea level rise in the presence of seawalls. Coastal
Engineering, 2018, 136, 172-182.

Bayesian Networks in coastal engineering: Distinguishing descriptive and predictive applications.
Coastal Engineering, 2018, 135, 16-30.

Laboratory investigation of the Bruun Rule and beach response to sea level rise. Coastal Engineering, 2018, 136, 183-202.

Drivers of alongshore variable dune erosion during a storm event: Observations and modelling.
Coastal Engineering, 2018, 131, 31-41.

Remote Sensing Is Changing Our View of the Coast: Insights from 40 Years of Monitoring at
Narrabeen-Collaroy, Australia. Remote Sensing, 2018, 10, 1744.
29 Experimental observation of increased apparent dispersion and mixing in a beach aquifer due to wave
forcing. Advances in Water Resources, 2018, 119, 245-256.

Shoreline recovery on wave-dominated sandy coastlines: the role of sandbar morphodynamics and nearshore wave parameters. Marine Geology, 2017, 385, 146-159.

Automatic super-resolution shoreline change monitoring using Landsat archival data: a case study at
Narrabeenâ€"Collaroy Beach, Australia. Journal of Applied Remote Sensing, 2017, 11, 016036.

Calibrating and assessing uncertainty in coastal numerical models. Coastal Engineering, 2017, 125,
28-41.

Rapid adjustment of shoreline behavior to changing seasonality of storms: observations and
33 modelling at an openấcoast beach. Earth Surface Processes and Landforms, 2017, 42, 1186-1194.
1.2
.7
43

34 Annual prediction of shoreline erosion and subsequent recovery. Coastal Engineering, 2017, 130, 14-25.
1.7

64

Extreme coastal erosion enhanced by anomalous extratropical storm wave direction. Scientific
Reports, 2017, 7, 6033.
to Decades. Oceanography, 2017, 30, .
37

A multi-decade dataset of monthly beach profile surveys and inshore wave forcing at Narrabeen,
2.4
Synchronised patterns of erosion and deposition observed at two beaches. Marine Geology, 2016, 380,
$196-204$.

40 Bathymetric controls on very low frequency rip current motions. Journal of Coastal Research, 2016,
$0.1 \quad 1$
75, 418-422.
Beach response to Australian East Coast Lows: A comparison between the 2007 and 2015 events,
Narrabeen-Collaroy Beach. Journal of Coastal Research, 2016, 75, 388-392.
$0.1 \quad 15$

42 Examining rip current escape strategies in non-traditional beach morphologies. Natural Hazards, 2016,
81, 145-165.
1.6

22
$43 \quad$ Large-scale Barrier Dynamics Experiment II (BARDEX II): Experimental design, instrumentation, test
program, and data set. Coastal Engineering, 2016, 113, 3-18.

44 Wave runup and overwash on a prototype-scale sand barrier. Coastal Engineering, 2016, 113, 88-103.
1.7

41

45 | Shoreface storm morphodynamics and mega-rip evolution at an embayed beach: Bondi Beach, NS |
| :--- |
| Australia. Continental Shelf Research, 2016, 116, 74-88. |

Lagrangian observations of circulation on an embayed beach with headland rip currents. Marine
High frequency in-situ field measurements of morphological response on a fine gravel beach during
energetic wave conditions. Marine Geology, 2013,342,1-13.

$62 \quad$| Resolution and Accuracy of an Airborne Scanning Laser System for Beach Surveys. Journal of |
| :--- |
| Atmospheric and Oceanic Technology, 2013, 30, 2452-2464. |

0.5

63 Coastal erosion mapping through intergration of SAR and Landsat TM imagery. , 2013, , .
65 Coastal sand barrier hydrology â€" observations from the BARDEX II prototype-scale laboratory experiment. Journal of Coastal Research, 2013, 165, 1886-1891.
$0.1 \quad 7$

66 Overwash experiment on a sandy barrier. Journal of Coastal Research, 2013, 65, 778-783.
0.1

21

67 Capitalizing on the surfcam phenomenon: a pilot study in regional-scale shoreline and inshore wave
monitoring utilizing existing camera infrastructure. Journal of Coastal Research, 2013, 165, 1433-1438.
$0.1 \quad 17$

Monitoring data requirements for shoreline prediction: How much, how long, and how often?.
$0.1 \quad 4$
Journal of Coastal Research, 2013, 165, 2179-2184.
.
4

GIS-based techniques for assessing the vulnerability of buildings to tsunami: current approaches and
0.8

16
future steps. Geological Society Special Publication, 2012, 361, 115-125.

Large-scale laboratory investigation into the effect of varying back-barrier lagoon water levels on
gravel beach morphology and swash zone sediment transport. Coastal Engineering, 2012, 63, 23-38.
1.7

28

Coastal gravel barrier hydrology â€" Observations from a prototype-scale laboratory experiment
1.7

15
73 Application of LiDAR technology for measurement of time-varying free-surface profiles in a laboratory
wave flume. Coastal Engineering, 2012, 68, 1-5.73 Application of LIDAR technology for measurement of time-varying free-surface profiles in a laboratory
79 Can standard energetics models be used to predict net
83 Alongshore fluid motions in the swash zone of a sandy and gravel beach. Coastal Engineering, 2011, 58,
$690-705$.
$1.7 \quad 8$

84 The effect of temporal wave averaging on the performance of an empirical shoreline evolution model.
Coastal Engineering, 2011, 58, 802-805.
1.7

17
85 Interannual variability and controls of the Sydney wave climate. International Journal of
1.5

42
Climatology, 2010, 30, 1322-1335.

Measurements of the time-varying free-surface profile across the swash zone obtained using an industrial LIDAR. Coastal Engineering, 2010, 57, 1059-1065.

Swash zone sediment transport, step dynamics and morphological response on a gravel beach. Marine

Measuring performance: environmental management systems. International Zoo Yearbook, 2009, 43,
$1.0 \quad 8$

Beach nourishments at Coolangatta Bay over the period 1987ấ" 2005 : Impacts and lessons. Coastal

In-situ estimates of net sediment flux per swash: Reply to discussion by TE Baldock of â€œMeasurement of

```
A simple numerical model for inlet sedimentation at intermittently openâ€"closed coastal lagoons.
Continental Shelf Research, 2009, 29, 1975-1982.


97


97


97


97   A behavioral template beach profile model for predicting seasonal to interannual shoreline   A behavioral template beach profile model for predicting seasonal to interannual shoreline   A behavioral template beach profile model for predicting seasonal to interannual shoreline   A behavioral template beach profile model for predicting seasonal to interannual shoreline


evolution. Journal of Geophysical Research, 2009, 114, .


evolution. Journal of Geophysical Research, 2009, 114, .


evolution. Journal of Geophysical Research, 2009, 114, .


evolution. Journal of Geophysical Research, 2009, 114, . .....  .....  ..... 3.3 .....  .....  ..... 3.3 .....  .....  ..... 3.3 .....  .....  ..... 3.3 .....  .....  ..... 68 .....  .....  ..... 68 .....  .....  ..... 68 .....  .....  ..... 68

<b>27.</b> FIELD MEASUREMENTS OF NET SEDIMENT FLUX FROM INDIVIDUAL SWASHES ON A SANDY BEACH.

<b>27.</b> FIELD MEASUREMENTS OF NET SEDIMENT FLUX FROM INDIVIDUAL SWASHES ON A SANDY BEACH.

<b>27.</b> FIELD MEASUREMENTS OF NET SEDIMENT FLUX FROM INDIVIDUAL SWASHES ON A SANDY BEACH.

<b>27.</b> FIELD MEASUREMENTS OF NET SEDIMENT FLUX FROM INDIVIDUAL SWASHES ON A SANDY BEACH.

98 , 2009,..

98 , 2009,..

98 , 2009,..

98 , 2009,.. .....  ..... 2 .....  ..... 2 .....  ..... 2 .....  ..... 2
MONITORING AND MODELLING OF ENTRANCE SEDIMENTATION AT AN INTERMITTENTLY OPEN-CLOSED
MONITORING AND MODELLING OF ENTRANCE SEDIMENTATION AT AN INTERMITTENTLY OPEN-CLOSED
MONITORING AND MODELLING OF ENTRANCE SEDIMENTATION AT AN INTERMITTENTLY OPEN-CLOSED
MONITORING AND MODELLING OF ENTRANCE SEDIMENTATION AT AN INTERMITTENTLY OPEN-CLOSED LAGOON. , 2009, , . ..... 0 ..... 0 ..... 0 ..... 00.9
100 ROTATION AND OSCILLATION OF AN EMBAYED BEACH. , 2009, , . ..... o
101 GROUNDWATER SEEPAGE BETWEEN A GRAVEL BARRIER BEACH AND A FRESHWATER LAGOON. , 2009, , . ..... 2
102 Measurement of wave-by-wave bed-levels in the swash zone. Coastal Engineering, 2008, 55, 1237-1242. ..... 1.7 ..... 77
103 A simple data transformation technique for pre-processing survey data at embayed beaches. Coastal ..... 1.7 ..... 16
Engineering, 2008, 55, 63-68.
0.189The Performance of Shoreline Detection Models Applied to Video Imagery. Journal of Coastal
105 Cartographica, 2007, 42, 139-151.
Coupled and noncoupled behavior of threeâ€dimensional morphological patterns in a double sandbar
112 Coastal Imaging Applications and Research in Australia. Journal of Coastal Research, 2006, 221, 37-48. ..... \(0.1 \quad 40\)
Shoreline response to multi-functional artificial surfing reefs: A numerical and physical modelling 113 Study. Coastal Engineering, 2006, 53, 589-611.

1.7
Observations of rip spacing, persistence and mobility at a long, straight coastline. Marine Geology,111 ACCESSING THE ACCURACY AND APPLICABILITY OF A MULTI-DECADAL BEACH SURVEY DATASET. , 2007, , .2
114 Shoreline response to submerged structures: A review. Coastal Engineering, 2006, 53, 65-79. ..... 1.7 ..... 129Discriminating Modes of Shoreline Response to Offshore-Detached Structures. Journal of Waterway,Discriminating Modes of Shoreline Response to Offshore-Det
Port, Coastal and Ocean Engineering, 2006, 132, 180-191.
0.5 ..... 20
116 Shoreline Definition and Detection: A Review. Journal of Coastal Research, 2005, 214, 688-703.0.1902
PROCESSES GOVERNING SHORELINE RESPONSE TO SUBMERGED BREAKWATERS: MULTI-FUNCTION STRUCTURES â€" A SPECIAL CASE. , 2005, , .
CZM Applications of Argus Coastal Imaging at the Gold Coast, Australia. Journal of Coastal Research,
CZM Applications of Argus Coastal Imaging at the Gold Coast, Australia. Journal of Coastal Research, 2004, 203, 739-752. 2004, 203, 739-752. 0.1 0.1 ..... 44 ..... 44
Field Measurements of Beachface Salinity Structure using Cross-Borehole Resistivity Imaging. Journalof Coastal Research, 2004, 203, 753-760.
0.1 ..... 33
120 Observations of nearshore crescentic sandbars. Journal of Geophysical Research, 2004, 109, .3.3150A video-based technique for mapping intertidal beach bathymetry. Coastal Engineering, 2003, 49,275-289.
1.7216
122 MONITORING OF A MULTI FUNCTIONAL SUBMERGED GEOTEXTILE REEF BREAKWATER. , 2003, , .5
123 Experiences with Physical Scale Basin Modelling Using Mobile Sediments. , 2001, , 2928. ..... 0The influence of swash infiltrationâ \(€^{\prime \prime}\) exfiltration on beach face sediment transport: onshore oroffshore?. Coastal Engineering, 2001, 42, 35-52.

Monitoring groundwater dynamics in the littoral zone at seasonal, storm, tide and swash
\(\left.\begin{array}{lll}\text { Rapid water table fluctuations within the beach face: Implications for swash zone sediment mobility?. } & & 1.7 \\ \hline\end{array} \begin{array}{l}\text { Coastal Engineering, 1997, 32, 45-59. }\end{array}\right]\)
Modelling the time-varying extent of groundwater seepage on tidal beaches. Earth Surface Processes

Simulating the influence of groundwater seepage on sediment transported by the sweep of the swash
134 zone across macro-tidal beaches. Marine Geology, 1995, 125, 153-174.
0.4 ..... 86
135 The Interstitial Environment of Sandy Beaches. Marine Ecology, 1994, 15, 177-212.

Water table outcropping on macro-tidal beaches: A simulation model. Marine Geology, 1993, 115,
 227-238.```

