Thomas Nyström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/233917/publications.pdf

Version: 2024-02-01

73 papers 7,365 citations

66234 42 h-index 70 g-index

160 all docs

160 docs citations

160 times ranked 7315 citing authors

#	Article	IF	CITATIONS
1	Role of oxidative carbonylation in protein quality control and senescence. EMBO Journal, 2005, 24, 1311-1317.	3.5	683
2	Asymmetric Inheritance of Oxidatively Damaged Proteins During Cytokinesis. Science, 2003, 299, 1751-1753.	6.0	598
3	The bacterial universal stress protein: function and regulation. Current Opinion in Microbiology, 2003, 6, 140-145.	2.3	438
4	Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes and Development, 2007, 21, 2410-2421.	2.7	328
5	Stationary-Phase Physiology. Annual Review of Microbiology, 2004, 58, 161-181.	2.9	313
6	The Polarisome Is Required for Segregation and Retrograde Transport of Protein Aggregates. Cell, 2010, 140, 257-267.	13.5	305
7	Regulation of sigma factor competition by the alarmone ppGpp. Genes and Development, 2002, 16, 1260-1270.	2.7	299
8	Differential Roles of the Universal Stress Proteins of Escherichia coli in Oxidative Stress Resistance, Adhesion, and Motility. Journal of Bacteriology, 2005, 187, 6265-6272.	1.0	299
9	Expression and role of the universal stress protein, UspA, of Escherichia coli during growth arrest. Molecular Microbiology, 1994, 11, 537-544.	1.2	223
10	Cloning, mapping and nucleotide sequencing of a gene encoding a universal stress protein in Eschericha coli. Molecular Microbiology, 1992, 6, 3187-3198.	1.2	213
11	Growth versus maintenance: a trade-off dictated by RNA polymerase availability and sigma factor competition?. Molecular Microbiology, 2004, 54, 855-862.	1.2	200
12	Bacterial senescence: protein oxidation in non-proliferating cells is dictated by the accuracy of the ribosomes. EMBO Journal, 2001, 20, 5280-5289.	3.5	156
13	Differential oxidative damage and expression of stress defence regulons in culturable and nonâ€culturable Escherichia coli cells. EMBO Reports, 2003, 4, 400-404.	2.0	156
14	Identical, Independent, and Opposing Roles of ppGpp and DksA in Escherichia coli. Journal of Bacteriology, 2007, 189, 5193-5202.	1.0	144
15	Not quite dead enough: on bacterial life, culturability, senescence, and death. Archives of Microbiology, 2001, 176, 159-164.	1.0	130
16	Lifespan Control by Redox-Dependent Recruitment of Chaperones to Misfolded Proteins. Cell, 2016, 166, 140-151.	13.5	120
17	Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10877-10881.	3.3	115
18	The good and the bad of being connected: the integrons of aging. Current Opinion in Cell Biology, 2014, 26, 107-112.	2.6	115

#	Article	IF	Citations
19	Life-span extension by a metacaspase in the yeast <i>Saccharomyces cerevisiae</i> . Science, 2014, 344, 1389-1392.	6.0	113
20	Restricted access: spatial sequestration of damaged proteins during stress and aging. EMBO Reports, 2017, 18, 377-391.	2.0	104
21	The glucose-starvation stimulon of Escherichia coli: induced and repressed synthesis of enzymes of central metabolic pathways and role of acetyl phosphate in gene expression and starvation survival. Molecular Microbiology, 1994, 12, 833-843.	1.2	103
22	The oncogenic RAS2val19 mutation locks respiration, independently of PKA, in a mode prone to generate ROS. EMBO Journal, 2003, 22, 3337-3345.	3. 5	101
23	The Role of the Alarmone (p)ppGpp in Ï,N Competition for Core RNA Polymerase. Journal of Biological Chemistry, 2003, 278, 1494-1503.	1.6	100
24	Conditional senescence in bacteria: death of the immortals. Molecular Microbiology, 2003, 48, 17-23.	1.2	99
25	Life Span Extension and H2O2 Resistance Elicited by Caloric Restriction Require the Peroxiredoxin Tsa1 in Saccharomyces cerevisiae. Molecular Cell, 2011, 43, 823-833.	4.5	93
26	Mitochondrial Translation Efficiency Controls Cytoplasmic Protein Homeostasis. Cell Metabolism, 2018, 27, 1309-1322.e6.	7.2	85
27	Peroxiredoxins, gerontogenes linking aging to genome instability and cancer. Genes and Development, 2012, 26, 2001-2008.	2.7	84
28	The Upsides and Downsides of Organelle Interconnectivity. Cell, 2017, 169, 24-34.	13.5	82
29	Nonculturable bacteria: programmed survival forms or cells at death's door?. BioEssays, 2003, 25, 204-211.	1.2	75
30	Enhancing protein disaggregation restores proteasome activity in aged cells. Aging, 2013, 5, 802-812.	1.4	75
31	Absence of Mitochondrial Translation Control Proteins Extends Life Span by Activating Sirtuin-Dependent Silencing. Molecular Cell, 2011, 42, 390-400.	4.5	74
32	Essential Genetic Interactors of SIR2 Required for Spatial Sequestration and Asymmetrical Inheritance of Protein Aggregates. PLoS Genetics, 2014, 10, e1004539.	1.5	73
33	Segregation of Protein Aggregates Involves Actin and the Polarity Machinery. Cell, 2011, 147, 959-961.	13.5	71
33	Segregation of Protein Aggregates Involves Actin and the Polarity Machinery. Cell, 2011, 147, 959-961. Asymmetric Inheritance of Aggregated Proteins and Age Reset in Yeast Are Regulated by Vac17-Dependent Vacuolar Functions. Cell Reports, 2016, 16, 826-838.	13.5 2.9	71
	Asymmetric Inheritance of Aggregated Proteins and Age Reset in Yeast Are Regulated by		

#	Article	IF	CITATIONS
37	The mystery of aging and rejuvenation—a budding topic. Current Opinion in Microbiology, 2014, 18, 61-67.	2.3	62
38	A Bacterial Kind of Aging. PLoS Genetics, 2007, 3, e224.	1.5	60
39	Spatial sequestration and detoxification of Huntingtin by the ribosome quality control complex. ELife, 2016, 5, .	2.8	57
40	Translational fidelity, protein oxidation, and senescence: lessons from bacteria. Ageing Research Reviews, 2002, 1, 693-703.	5.0	52
41	Emergency derepression: stringency allows RNA polymerase to override negative control by an active repressor. Molecular Microbiology, 2000, 35, 435-443.	1.2	51
42	FMN reduces Amyloid- \hat{l}^2 toxicity in yeast by regulating redox status and cellular metabolism. Nature Communications, 2020, 11, 867.	5.8	50
43	Opposing roles of Ubp3-dependent deubiquitination regulate replicative life span and heat resistance. EMBO Journal, 2014, 33, 747-761.	3.5	49
44	A Proximal Promoter Element Required for Positive Transcriptional Control by Guanosine Tetraphosphate and DksA Protein during the Stringent Response. Journal of Biological Chemistry, 2013, 288, 21055-21064.	1.6	46
45	Conditional and replicative senescence in Escherichia coli. Current Opinion in Microbiology, 2006, 9, 612-618.	2.3	45
46	Increased RNA polymerase availability directs resources towards growth at the expense of maintenance. EMBO Journal, 2009, 28, 2209-2219.	3.5	45
47	Underproduction of Ï,70 Mimics a Stringent Response. Journal of Biological Chemistry, 2003, 278, 968-973.	1.6	43
48	The Role of Mitochondria in the Aging Processes of Yeast. Sub-Cellular Biochemistry, 2011, 57, 55-78.	1.0	43
49	Stress Granule-Defective Mutants Deregulate Stress Responsive Transcripts. PLoS Genetics, 2014, 10, e1004763.	1.5	40
50	Protein quality control in time and space - links to cellular aging. FEMS Yeast Research, 2014, 14, 40-48.	1.1	32
51	The dual role of a yeast metacaspase: What doesn't kill you makes you stronger. BioEssays, 2015, 37, 525-531.	1.2	32
52	Syntaxin 5 Is Required for the Formation and Clearance of Protein Inclusions during Proteostatic Stress. Cell Reports, 2019, 28, 2096-2110.e8.	2.9	30
53	Studying Spatial Protein Quality Control, Proteopathies, and Aging Using Different Model Misfolding Proteins in S. cerevisiae. Frontiers in Molecular Neuroscience, 2018, 11, 249.	1.4	28
54	Nuclear envelope budding is a response to cellular stress. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28

#	Article	IF	Citations
55	Spatial protein quality control and the evolution of lineage-specific ageing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 71-75.	1.8	26
56	Sir2-dependent asymmetric segregation of damaged proteins in ubp10 null mutants is independent of genomic silencing. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 630-638.	1.9	20
57	Peroxiredoxin promotes longevity and H2O2-resistance in yeast through redox-modulation of protein kinase A. ELife, 2020, 9, .	2.8	20
58	How and why do toxic conformers of aberrant proteins accumulate during ageing?. Essays in Biochemistry, 2017, 61, 317-324.	2.1	18
59	Role of the ribosomal quality control machinery in nucleocytoplasmic translocation of polyQ-expanded huntingtin exon-1. Biochemical and Biophysical Research Communications, 2017, 493, 708-717.	1.0	17
60	Large organellar changes occur during mild heat shock in yeast. Journal of Cell Science, 2022, 135, .	1.2	16
61	An Hsp90 co-chaperone links protein folding and degradation and is part of a conserved protein quality control. Cell Reports, 2021, 35, 109328.	2.9	15
62	A genome-wide imaging-based screening to identify genes involved in synphilin-1 inclusion formation in Saccharomyces cerevisiae. Scientific Reports, 2016, 6, 30134.	1.6	12
63	Differential role of cytosolic Hsp70s in longevity assurance and protein quality control. PLoS Genetics, 2021, 17, e1008951.	1.5	12
64	Genome-wide imaging screen uncovers molecular determinants of arsenite-induced protein aggregation and toxicity. Journal of Cell Science, 2021, 134, .	1.2	11
65	Correlative single-molecule fluorescence barcoding of gene regulation in Saccharomyces cerevisiae. Methods, 2021, 193, 62-67.	1.9	8
66	Comparison of endogenously expressed fluorescent protein fusions behaviour for protein quality control and cellular ageing research. Scientific Reports, 2021, 11, 12819.	1.6	8
67	Aging: Filtering Out Bad Mitochondria. Current Biology, 2013, 23, R1037-R1039.	1.8	6
68	Differential effects of soluble and aggregating polyQ proteins on cytotoxicity and type-1 myosin-dependent endocytosis in yeast. Scientific Reports, 2017, 7, 11328.	1.6	6
69	Oxidation of Bacterial Proteome in Response to Starvation. Methods of Biochemical Analysis, 2005, 49, 89-95.	0.2	4
70	Hitchhiking on vesicles: a way to harness ageâ€related proteopathies?. FEBS Journal, 2020, 287, 5068-5079.	2.2	4
71	Effects of starvation for exogenous carbon on functional mRNA stability and rate of peptide chain elongation in Escherichia coli. , 0, .		4
72	Oxidative Damage and Cellular Senescence: Lessons from Bacteria and Yeast., 2006,, 473-484.		1

Thomas Nystrã¶m

#	Article	IF	CITATIONS
73	Selective protein degradation ensures cellular longevity. ELife, 2016, 5, .	2.8	0