Xinjian Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2339135/publications.pdf Version: 2024-02-01

XINIIAN CHENC

#	Article	IF	CITATIONS
1	Novel all-cellulose ecocomposites prepared in ionic liquids. Cellulose, 2009, 16, 217-226.	4.9	80
2	A facile method to fabricate silica-coated carbon nanotubes and silica nanotubes from carbon nanotubes templates. Journal of Materials Science, 2009, 44, 4539-4545.	3.7	79
3	A highly sensitive sensor based on hollow particles for the detection, adsorption and removal of Hg2+ ions. Journal of Materials Chemistry, 2012, 22, 24102.	6.7	54
4	A facile method to prepare UV light-triggered self-healing polyphosphazenes. Journal of Materials Science, 2015, 50, 2239-2246.	3.7	49
5	Facile method to prepare monodispersed Ag/polystyrene composite microspheres and their properties. Journal of Polymer Science Part A, 2009, 47, 4547-4554.	2.3	41
6	The effect of molecular weight of hyperbranched epoxy resins with a silicone skeleton on performance. RSC Advances, 2013, 3, 9522.	3.6	41
7	Fluorescent chitosan hydrogel for highly and selectively sensing of p-nitrophenol and 2, 4, 6-trinitrophenol. Carbohydrate Polymers, 2019, 225, 115253.	10.2	41
8	Immobilization of RAFT agents on silica nanoparticles utilizing an alternative functional group and subsequent surfaceâ€initiated RAFT polymerization. Journal of Polymer Science Part A, 2009, 47, 467-484.	2.3	39
9	Environment-friendly synthesis and performance of a novel hyperbranched epoxy resin with a silicone skeleton. RSC Advances, 2013, 3, 3095.	3.6	38
10	A facile method to prepare CdS/polystyrene composite particles. Journal of Colloid and Interface Science, 2008, 326, 121-128.	9.4	35
11	A novel coumarin-chitosan fluorescent hydrogel for the selective identification of Fe ²⁺ in aqueous systems. Polymer Chemistry, 2020, 11, 6066-6072.	3.9	32
12	Facile method to synthesize fluorescent chitosan hydrogels for selective detection and adsorption of Hg2+/Hg+. Carbohydrate Polymers, 2022, 288, 119417.	10.2	29
13	A facile method for the synthesis of ZnS/polystyrene composite particles and ZnS hollow micro-spheres. Journal of Materials Science, 2010, 45, 777-782.	3.7	28
14	Bodipy-based chemosensors for highly sensitive and selective detection of Hg ²⁺ ions. New Journal of Chemistry, 2018, 42, 19224-19231.	2.8	26
15	Reaction-based highly selective and sensitive monomer/polymer probes with Schiff base groups for the detection of Hg2+ and Fe3+ ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 243, 118763.	3.9	26
16	Facile Fabrication of Porous ZnS and ZnO Films by Coaxial Electrospinning for Highly Efficient Photodegradation of Organic Dyes. Photochemistry and Photobiology, 2018, 94, 17-26.	2.5	22
17	Highly selective and reversible colorimetric detection of mercury ions by a hydrophilic cycloruthenated complex in water. Sensors and Actuators B: Chemical, 2014, 201, 343-350.	7.8	21
18	A facile method for the preparation of thermally remendable crossâ€ ŀ inked polyphosphazenes. Journal of Polymer Science Part A, 2013, 51, 1205-1214.	2.3	20

XINJIAN CHENG

#	Article	IF	CITATIONS
19	Fluorescent dialdehyde-BODIPY chitosan hydrogel and its highly sensing ability to Cu2+ ion. Carbohydrate Polymers, 2021, 273, 118590.	10.2	20
20	Phenothiazine-chitosan based eco-adsorbents: A special design for mercury removal and fast naked eye detection. International Journal of Biological Macromolecules, 2020, 162, 1839-1848.	7.5	19
21	Imination of Microporous Chitosan Fibers—A Route to Biomaterials with "On Demand―Antimicrobial Activity and Biodegradation for Wound Dressings. Pharmaceutics, 2022, 14, 117.	4.5	19
22	Fluorescent chitosan-BODIPY macromolecular chemosensors for detection and removal of Hg2+ and Fe3+ ions. International Journal of Biological Macromolecules, 2022, 198, 194-203.	7.5	18
23	Highly selective and sensitive polymers with fluorescent side groups for the detection of Hg 2+ ion. Materials Chemistry and Physics, 2017, 196, 262-269.	4.0	16
24	Highly sensitive and selective fluorescent monomer/polymer probes for Hg2+ and Ag+ recognition and imaging of Hg2+ in living cells. Analytical and Bioanalytical Chemistry, 2020, 412, 881-894.	3.7	16
25	Highly selective ratiometric fluorescent probes for the detection of Fe3+ and its application in living cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117720.	3.9	15
26	Chitosan based macromolecular probes for the selective detection and removal of Fe3+ ion. International Journal of Biological Macromolecules, 2021, 186, 303-313.	7.5	15
27	Reaction-based fluorescent silk probes with high sensitivity and selectivity to Hg ²⁺ and Ag ⁺ ions. Journal of Materials Chemistry C, 2021, 9, 4877-4887.	5.5	15
28	Synthesis of allylâ€ended hyperbranched organic silicone resin by halloysiteâ€supported platinum catalyst. Journal of Applied Polymer Science, 2012, 126, 1580-1584.	2.6	13
29	Highly sensitive fluorescent polyamide for detection of Hg ²⁺ , Hg ⁺ , Fe ³⁺ , and Fe ²⁺ ions. Journal of Polymer Science Part A, 2015, 53, 615-621.	2.3	12
30	Coaxial Electrospinning Method for the Preparation of TiO ₂ @CdS/ <scp>PVA</scp> Composite Nanofiber Mat and Investigation on its Photodegradation Catalysis. Photochemistry and Photobiology, 2016, 92, 515-522.	2.5	12
31	Fabrication of MWNT@CMPs and carbonized MWNT@CMPs for supercapacitors. Materials Chemistry and Physics, 2019, 226, 309-317.	4.0	12
32	Novel water soluble polymeric sensors for the sensitive and selective recognition of Fe3+/Fe2+ in aqueous media. European Polymer Journal, 2022, 162, 110891.	5.4	12
33	Hybrid Selfâ€Assembly, Crystal, and Fractal Behavior of a Carboxyâ€Ended Hyperbranched Polyester/Copper Complex. Macromolecular Chemistry and Physics, 2013, 214, 370-377.	2.2	11
34	Fluorescent PU films for detection and removal of Hg 2+ , Cr 3+ and Fe 3+ ions. Materials and Design, 2016, 95, 133-140.	7.0	11
35	Fully-water-soluble BODIPY containing fluorescent polymers prepared by RAFT method for the detection of Fe3+ ions. European Polymer Journal, 2021, 150, 110428.	5.4	11
36	Novel Fluorescence Signal Magnified Chemosensors for Detection of Fe ³⁺ and Hg ²⁺ lons. ChemistrySelect, 2016, 1, 1981-1990.	1.5	10

XINJIAN CHENG

#	Article	IF	CITATIONS
37	Fluorescent cellulose/testing paper for the sensitive and selective recognition of explosives 2,4,6-trinitrophenol and 2,4-dinitrophenylhydrazine. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 424, 113632.	3.9	10
38	Fluorescent Porous Silica Microspheres for Highly and Selectively Detecting Hg ²⁺ and Pb ²⁺ lons and Imaging in Living Cells. ACS Omega, 2019, 4, 18381-18391.	3.5	9
39	A Facile method to Prepare Monodispersed CdS/SiO ₂ Composite Microspheres and Investigation on Their Photocatalytic Properties. Photochemistry and Photobiology, 2012, 88, 1433-1441.	2.5	8
40	Synthesis of heterogeneous shape-controllable nano-hyperbranched polymer/Pt(0) catalyst with high catalytic activity in hydrosilylation. Macromolecular Research, 2012, 20, 549-551.	2.4	8
41	Preparation of highly sensitive sensors based on polystyrene microspheres for the detection and removal of Hg2+ ions. Journal of Polymer Science Part A, 2013, 51, 4592-4600.	2.3	8
42	A facile method to prepare composite and porous polyphosphazene membranes and investigation of their properties. RSC Advances, 2014, 4, 35769-35776.	3.6	8
43	A high-performance polyurethane sponge for the detection, adsorption and separation of Cu ²⁺ ions. RSC Advances, 2014, 4, 18222-18228.	3.6	8
44	Fluorescent macromolecular chemosensors for highly and selectively detecting of 2, 4, 6-trinitrophenol. Materials Research Express, 2020, 7, 105304.	1.6	8
45	Highly sensitive and selective fluorescence chemosensors containing phenanthroline moieties for detection of Zn2+ and Cd2+ ions. Chemical Papers, 2020, 74, 485-497.	2.2	7
46	Fluorescent multi-component polymer sensors for the sensitive and selective detection of Hg ²⁺ /Hg ⁺ ions <i>via</i> dual mode fluorescence and colorimetry. New Journal of Chemistry, 2021, 45, 22888-22901.	2.8	7
47	Synthesis of hybrid crosslinked polyphosphazenes and investigation of their properties. Iranian Polymer Journal (English Edition), 2014, 23, 689-698.	2.4	6
48	Fabrication of a photo-catalytic cell using polymer-based composite films and investigation of its performance in the degradation of methyl blue. RSC Advances, 2015, 5, 25830-25839.	3.6	6
49	Facile synthesis of porous organic polymers for the absorption of Pd(<scp>ii</scp>) ions and organic dyes. RSC Advances, 2016, 6, 79781-79791.	3.6	6
50	BODIPY-based fluorescent polymeric probes for selective detection of Fe3+ ions in aqueous solution. SN Applied Sciences, 2021, 3, 1.	2.9	6
51	A polymer membrane tethered with a cycloruthenated complex for colorimetric detection of Hg2+ ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117541.	3.9	5
52	Fluorescent silica nanoparticles and glass surfaces for the detection and removal of Pd(II) ions. Journal of Materials Science, 2016, 51, 8502-8515.	3.7	4
53	Cellulose-based fluorescent macromolecular sensors and their ability in 2, 4, 6-trinitrophenol detection. Materials Today Chemistry, 2021, 22, 100615.	3.5	4
54	Facile method to prepare Pd/Polystyrene composite microspheres and investigation on their catalytic properties. Iranian Polymer Journal (English Edition), 2012, 21, 335-341.	2.4	2

XINJIAN CHENG

#	Article	IF	CITATIONS
55	A highly sensitive "test paper―for Hg ²⁺ ions based on polyurethane membrane. Polymers for Advanced Technologies, 2013, 24, 1110-1112.	3.2	2
56	A facile method to prepare CdS/polymer nanocomposite fibers for the photodegradation of methylene blue under sunlight. Journal of Polymer Engineering, 2017, 37, 107-112.	1.4	2
57	Facile Preparation of Micro/Mesoporous Conjugated Polymers for Multifunctional Sensing and Separation Applications. ChemistrySelect, 2018, 3, 4985-4993.	1.5	2
58	Fabrication of conjugated polymer/carbon nano-tube composite materials for capacitors. Materials Research Express, 2019, 6, 036302.	1.6	2