
Brian K Coombes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2338462/publications.pdf Version: 2024-02-01

RRIAN & COOMBES

#	Article	IF	CITATIONS
1	A draft genome of Yersinia pestis from victims of the Black Death. Nature, 2011, 478, 506-510.	13.7	619
2	Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature, 2014, 510, 503-506.	13.7	461
3	Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nature Chemical Biology, 2011, 7, 348-350.	3.9	447
4	Pentamidine sensitizes Gram-negative pathogens to antibiotics and overcomes acquired colistin resistance. Nature Microbiology, 2017, 2, 17028.	5.9	256
5	Targeted enrichment of ancient pathogens yielding the pPCP1 plasmid of <i>Yersinia pestis</i> from victims of the Black Death. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E746-52.	3.3	211
6	Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nature Communications, 2018, 9, 458.	5.8	203
7	Genome sequence of adherent-invasive Escherichia coli and comparative genomic analysis with other E. coli pathotypes. BMC Genomics, 2010, 11, 667.	1.2	193
8	Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling. Nature, 2020, 578, 582-587.	13.7	177
9	Molecular Analysis as an Aid To Assess the Public Health Risk of Non-O157 Shiga Toxin-Producing <i>Escherichia coli</i> Strains. Applied and Environmental Microbiology, 2008, 74, 2153-2160.	1.4	172
10	Expression and Secretion of Salmonella Pathogenicity Island-2 Virulence Genes in Response to Acidification Exhibit Differential Requirements of a Functional Type III Secretion Apparatus and SsaL. Journal of Biological Chemistry, 2004, 279, 49804-49815.	1.6	166
11	Muramyl Dipeptide-Based Postbiotics Mitigate Obesity-Induced Insulin Resistance via IRF4. Cell Metabolism, 2017, 25, 1063-1074.e3.	7.2	149
12	Analysis of the Contribution of Salmonella Pathogenicity Islands 1 and 2 to Enteric Disease Progression Using a Novel Bovine Ileal Loop Model and a Murine Model of Infectious Enterocolitis. Infection and Immunity, 2005, 73, 7161-7169.	1.0	135
13	Persistent infection with Crohn's disease-associated adherent-invasive Escherichia coli leads to chronic inflammation and intestinal fibrosis. Nature Communications, 2013, 4, 1957.	5.8	134
14	Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science, 2019, 363, .	6.0	121
15	Bacterial Genetic Determinants of Nonâ€0157 STEC Outbreaks and Hemolyticâ€Uremic Syndrome after Infection. Journal of Infectious Diseases, 2006, 194, 819-827.	1.9	110
16	FimH Adhesin of Type 1 Fimbriae Is a Potent Inducer of Innate Antimicrobial Responses Which Requires TLR4 and Type 1 Interferon Signalling. PLoS Pathogens, 2008, 4, e1000233.	2.1	108
17	Salmonella Pathogenicity Island 2 Is Expressed Prior to Penetrating the Intestine. PLoS Pathogens, 2005, 1, e32.	2.1	105
18	Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2. Nature Communications, 2019, 10, 1198.	5.8	102

#	Article	IF	CITATIONS
19	Identification of MEK- and phosphoinositide 3-kinase-dependent signalling as essential events during Chlamydia pneumoniae invasion of HEp2 cells. Cellular Microbiology, 2002, 4, 447-460.	1.1	101
20	Type VI Secretion System-Associated Gene Clusters Contribute to Pathogenesis of Salmonella enterica Serovar Typhimurium. Infection and Immunity, 2012, 80, 1996-2007.	1.0	95
21	Negative regulation of Salmonella pathogenicity island 2 is required for contextual control of virulence during typhoid. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17460-17465.	3.3	92
22	Chlamydia pneumoniae Infection of Human Endothelial Cells Induces Proliferation of Smooth Muscle Cells via an Endothelial Cell-Derived Soluble Factor(s). Infection and Immunity, 1999, 67, 2909-2915.	1.0	87
23	Evolution of Salmonella-Host Cell Interactions through a Dynamic Bacterial Genome. Frontiers in Cellular and Infection Microbiology, 2017, 7, 428.	1.8	85
24	Crossing the Line: Selection and Evolution of Virulence Traits. PLoS Pathogens, 2006, 2, e42.	2.1	84
25	<i>Salmonella enterica</i> Serovar Senftenberg Human Clinical Isolates Lacking SPI-1. Journal of Clinical Microbiology, 2008, 46, 1330-1336.	1.8	81
26	GogB Is an Anti-Inflammatory Effector that Limits Tissue Damage during Salmonella Infection through Interaction with Human FBXO22 and Skp1. PLoS Pathogens, 2012, 8, e1002773.	2.1	77
27	NleG Type 3 Effectors from Enterohaemorrhagic Escherichia coli Are U-Box E3 Ubiquitin Ligases. PLoS Pathogens, 2010, 6, e1000960.	2.1	74
28	cDNA Array Analysis of Altered Gene Expression in Human Endothelial Cells in Response to Chlamydia pneumoniae Infection. Infection and Immunity, 2001, 69, 1420-1427.	1.0	73
29	Characterization of Escherichia coli isolated from gut biopsies of newly diagnosed patients with inflammatory bowel disease. Inflammatory Bowel Diseases, 2011, 17, 1451-1463.	0.9	72
30	SseL Is a Salmonella -Specific Translocated Effector Integrated into the SsrB-Controlled Salmonella Pathogenicity Island 2 Type III Secretion System. Infection and Immunity, 2007, 75, 574-580.	1.0	69
31	Identification of the Regulatory Logic Controlling Salmonella Pathoadaptation by the SsrA-SsrB Two-Component System. PLoS Genetics, 2010, 6, e1000875.	1.5	67
32	Genetic and Molecular Analysis of GogB, a Phage-encoded Type III-secreted Substrate in Salmonella enterica Serovar Typhimurium with Autonomous Expression from its Associated Phage. Journal of Molecular Biology, 2005, 348, 817-830.	2.0	66
33	Salmonella Phage ST64B Encodes a Member of the SseK/NleB Effector Family. PLoS ONE, 2011, 6, e17824.	1.1	66
34	Host-Specific Adaptive Diversification of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. Cell Host and Microbe, 2019, 25, 301-312.e5.	5.1	65
35	Pathogenic adaptation of intracellular bacteria by rewiring a cis-regulatory input function. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3982-3987.	3.3	60
36	Quantitative Mass Spectrometry Catalogues Salmonella Pathogenicity Island-2 Effectors and Identifies Their Cognate Host Binding Partners. Journal of Biological Chemistry, 2011, 286, 24023-24035.	1.6	60

#	Article	IF	CITATIONS
37	The Evolution of Virulence in Non-O157 Shiga Toxin-Producing Escherichia Coli. Frontiers in Microbiology, 2011, 2, 90.	1.5	59
38	A macrophage-based screen identifies antibacterial compounds selective for intracellular Salmonella Typhimurium. Nature Communications, 2019, 10, 197.	5.8	59
39	Virulence Is Positively Selected by Transmission Success between Mammalian Hosts. Current Biology, 2007, 17, 783-788.	1.8	57
40	Host Defense Peptide Resistance Contributes to Colonization and Maximal Intestinal Pathology by Crohn's Disease-Associated Adherent-Invasive Escherichia coli. Infection and Immunity, 2014, 82, 3383-3393.	1.0	55
41	Chlamydia pneumoniae and atherosclerosis: does the evidence support a causal or contributory role?. FEMS Microbiology Letters, 2001, 197, 1-9.	0.7	54
42	Type III secretion systems in symbiotic adaptation of pathogenic and non-pathogenic bacteria. Trends in Microbiology, 2009, 17, 89-94.	3.5	54
43	A General Approach to the Construction of Structureâ€Switching Reporters from RNA Aptamers. Angewandte Chemie - International Edition, 2010, 49, 7938-7942.	7.2	53
44	Evasive Maneuvers by Secreted Bacterial Proteins to Avoid Innate Immune Responses. Current Biology, 2004, 14, R856-R867.	1.8	50
45	Zinc Chelation by a Small-Molecule Adjuvant Potentiates Meropenem Activity in Vivo against NDM-1-Producing <i>Klebsiella pneumoniae</i> . ACS Infectious Diseases, 2015, 1, 533-543.	1.8	50
46	The transcriptional regulator SsrB is involved in a molecular switch controlling virulence lifestyles of Salmonella. PLoS Pathogens, 2017, 13, e1006497.	2.1	50
47	Repression of Intracellular Virulence Factors in Salmonella by the Hha and YdgT Nucleoid-Associated Proteins. Journal of Bacteriology, 2007, 189, 3669-3673.	1.0	47
48	Dendritic cell discoveries provide new insight into the cellular immunobiology of DNA vaccines. Immunology Letters, 2001, 78, 103-111.	1.1	41
49	<i>Salmonella</i> -Containing Vacuoles Display Centrifugal Movement Associated with Cell-to-Cell Transfer in Epithelial Cells. Infection and Immunity, 2009, 77, 996-1007.	1.0	39
50	Citrobacter rodentium virulence in mice associates with bacterial load andÂthe type III effector NleE. Microbes and Infection, 2007, 9, 400-407.	1.0	38
51	High-throughput fitness screening and transcriptomics identify a role for a type IV secretion system in the pathogenesis of Crohn's disease-associated Escherichia coli. Nature Communications, 2021, 12, 2032.	5.8	38
52	Thermosensing Coordinates a Cis-regulatory Module for Transcriptional Activation of the Intracellular Virulence System in Salmonella enterica Serovar Typhimurium. Journal of Biological Chemistry, 2007, 282, 34077-34084.	1.6	37
53	Interleukin-15 and NK1.1 ⁺ Cells Provide Innate Protection against Acute <i>Salmonella enterica</i> Serovar Typhimurium Infection in the Gut and in Systemic Tissues. Infection and Immunity, 2009, 77, 214-222.	1.0	37
54	Oral infection of mice with Salmonella entericaserovar Typhimurium causes meningitis and infection of the brain. BMC Infectious Diseases, 2007, 7, 65.	1.3	36

#	Article	IF	CITATIONS
55	Structural and Biochemical Characterization of SrcA, a Multi-Cargo Type III Secretion Chaperone in Salmonella Required for Pathogenic Association with a Host. PLoS Pathogens, 2010, 6, e1000751.	2.1	36
56	SseA is required for translocation of Salmonella pathogenicity island-2 effectors into host cells. Microbes and Infection, 2003, 5, 561-570.	1.0	33
57	Identification of the Docking Site between a Type III Secretion System ATPase and a Chaperone for Effector Cargo. Journal of Biological Chemistry, 2014, 289, 23734-23744.	1.6	33
58	Acute Infectious Gastroenteritis Potentiates a Crohn's Disease Pathobiont to Fuel Ongoing Inflammation in the Post-Infectious Period. PLoS Pathogens, 2016, 12, e1005907.	2.1	32
59	Chlamydia pneumoniaeInfection of Endothelial Cells Induces Transcriptional Activation of Plateletâ€Đerived Growth Factor–B: A Potential Link to Intimal Thickening in a Rabbit Model of Atherosclerosis. Journal of Infectious Diseases, 2002, 185, 1621-1630.	1.9	31
60	Mutational analysis of Salmonella translocated effector members SifA and SopD2 reveals domains implicated in translocation, subcellular localization and function. Microbiology (United Kingdom), 2006, 152, 2323-2343.	0.7	30
61	Subinhibitory concentrations of tetracycline affect virulence gene expression in a multi-resistant Salmonella enterica subsp. enterica serovar Typhimurium DT104. Microbes and Infection, 2008, 10, 901-907.	1.0	30
62	Humanized mice for <i>Salmonellatyphi</i> infection: new tools for an old problem. Virulence, 2011, 2, 248-252.	1.8	30
63	CXCL9 Contributes to Antimicrobial Protection of the Gut during Citrobacter rodentium Infection Independent of Chemokine-Receptor Signaling. PLoS Pathogens, 2015, 11, e1004648.	2.1	30
64	Insertion of the bacterial type III translocon: not your average needle stick. Trends in Microbiology, 2005, 13, 92-95.	3.5	29
65	Transcriptional Priming of Salmonella Pathogenicity Island-2 Precedes Cellular Invasion. PLoS ONE, 2011, 6, e21648.	1.1	29
66	The Unique Lifestyle of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. Journal of Molecular Biology, 2019, 431, 2970-2981.	2.0	28
67	Genetic and Chemical Screening in Human Blood Serum Reveals Unique Antibacterial Targets and Compounds against Klebsiella pneumoniae. Cell Reports, 2020, 32, 107927.	2.9	28
68	Multiple histidines in the periplasmic domain of the <scp><i>S</i></scp> <i>almonella enterica</i> sensor kinase <scp>SsrA</scp> enhance signaling in response to extracellular acidification. Molecular Microbiology, 2015, 95, 678-691.	1.2	27
69	Targeting Two-Component Systems Uncovers a Small-Molecule Inhibitor of Salmonella Virulence. Cell Chemical Biology, 2020, 27, 793-805.e7.	2.5	26
70	Psychological stress impairs IL22-driven protective gut mucosal immunity against colonising pathobionts. Nature Communications, 2021, 12, 6664.	5.8	26
71	A polymicrobial view of disease potential in Crohn's-associated adherent-invasive <i>E. coli</i> . Gut Microbes, 2018, 9, 166-174.	4.3	25
72	Mimicking the human environment in mice reveals that inhibiting biotin biosynthesis is effective against antibiotic-resistant pathogens. Nature Microbiology, 2020, 5, 93-101.	5.9	25

#	Article	IF	CITATIONS
73	Role of RpoS in the Virulence of <i>Citrobacter rodentium</i> . Infection and Immunity, 2009, 77, 501-507.	1.0	24
74	<i>Salmonella</i> Evades <scp>d</scp> -Amino Acid Oxidase To Promote Infection in Neutrophils. MBio, 2014, 5, e01886.	1.8	24
75	<i>Salmonella enterica</i> Serovar Typhimurium Exploits Toll-Like Receptor Signaling during the Host-Pathogen Interaction. Infection and Immunity, 2009, 77, 4750-4760.	1.0	22
76	Characterization of DalS, an ATP-binding Cassette Transporter for d-Alanine, and Its Role in Pathogenesis in Salmonella enterica. Journal of Biological Chemistry, 2012, 287, 15242-15250.	1.6	22
77	CD3 ^{â^'} NK1.1 ⁺ cells aid in the early induction of a Th1 response to an attaching and effacing enteric pathogen. European Journal of Immunology, 2013, 43, 2638-2649.	1.6	22
78	Regulatory Evolution Drives Evasion of Host Inflammasomes by Salmonella Typhimurium. Cell Reports, 2018, 25, 825-832.e5.	2.9	22
79	RpoE fine tunes expression of a subset of SsrB-regulated virulence factors in Salmonella enterica serovar Typhimurium. BMC Microbiology, 2009, 9, 45.	1.3	21
80	Mapping and Regulation of Genes within Salmonella Pathogenicity Island 12 That Contribute to <i>In Vivo</i> Fitness of Salmonella enterica Serovar Typhimurium. Infection and Immunity, 2013, 81, 2394-2404.	1.0	21
81	The Role of the Host in Driving Phenotypic Heterogeneity in Salmonella. Trends in Microbiology, 2019, 27, 508-523.	3.5	21
82	Novel Repressor of Escherichia coli O157:H7 Motility Encoded in the Putative Fimbrial Cluster OI-1. Journal of Bacteriology, 2012, 194, 5343-5352.	1.0	19
83	Functional diversification of the NleG effector family in enterohemorrhagic <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10004-10009.	3.3	19
84	Antibiotics Potentiate Adherent-Invasive <i>E. coli</i> Infection and Expansion. Inflammatory Bowel Diseases, 2019, 25, 711-721.	0.9	19
85	A novel inhibitor of Chlamydophila pneumoniae protein kinase D (PknD) inhibits phosphorylation of CdsD and suppresses bacterial replication. BMC Microbiology, 2009, 9, 218.	1.3	16
86	Molecular basis for CesT recognition of type III secretion effectors in enteropathogenic Escherichia coli. PLoS Pathogens, 2018, 14, e1007224.	2.1	16
87	Convergence of External Crohn's Disease Risk Factors on Intestinal Bacteria. Frontiers in Immunology, 2015, 6, 558.	2.2	14
88	Expression and secretion hierarchy in the nonflagellar type III secretion system. Future Microbiology, 2011, 6, 193-202.	1.0	13
89	A Highly Effective Component Vaccine against Nontyphoidal Salmonella enterica Infections. MBio, 2015, 6, e01421-15.	1.8	11
90	Emerging and divergent roles of pyrophosphorylated nucleotides in bacterial physiology and pathogenesis. PLoS Pathogens, 2021, 17, e1009532.	2.1	10

#	Article	IF	CITATIONS
91	Active modification of host inflammation bySalmonella. Gut Microbes, 2013, 4, 140-145.	4.3	9
92	The non-motile phenotype of Salmonella hha ydgT mutants is mediated through Pefl-SrgD. BMC Microbiology, 2011, 11, 141.	1.3	8
93	Interpreting the Host-Pathogen Dialogue Through Microarrays. Advances in Applied Microbiology, 2004, 54, 291-331.	1.3	7
94	Complete Genome Sequence of Citrobacter rodentium Strain DBS100. Microbiology Resource Announcements, 2019, 8, .	0.3	7
95	Low dietary fiber promotes enteric expansion of a Crohn's disease-associated pathobiont independent of obesity. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E338-E350.	1.8	7
96	The SseC translocon component in Salmonella enterica serovar Typhimurium is chaperoned by SscA. BMC Microbiology, 2013, 13, 221.	1.3	6
97	Regulatory evolution at the host–pathogen interface. Canadian Journal of Microbiology, 2013, 59, 365-367.	0.8	6
98	Emergence of invasive Salmonella in Africa. Nature Microbiology, 2021, 6, 273-274.	5.9	4
99	Cheats never prosper. Nature, 2013, 494, 321-322.	13.7	3
100	(p)ppGpp-Dependent Regulation of the Nucleotide Hydrolase PpnN Confers Complement Resistance in Salmonella enterica Serovar Typhimurium. Infection and Immunity, 2021, 89, .	1.0	2
101	A Fresh Look at the Type III Secretion System: Two-Step Model of Effector Translocation in Pathogenic Bacteria. Frontiers in Microbiology, 2011, 2, 113.	1.5	1
102	Bacterial evolution: Making a host-adapted bacterium. Nature Microbiology, 2016, 1, 16010.	5.9	1
103	High-Throughput Chemical Screening for Inhibitors of Salmonella Pathogenicity Island 2. STAR Protocols, 2020, 1, 100057.	0.5	0