
Natalia A Arroyo-Manzanares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2338224/publications.pdf

Version: 2024-02-01

Natalia A

#	Article	IF	CITATIONS
1	Target vs spectral fingerprint data analysis of Iberian ham samples for avoiding labelling fraud using headspace – gas chromatography–ion mobility spectrometry. Food Chemistry, 2018, 246, 65-73.	4.2	150
2	Multiclass mycotoxin analysis in Silybum marianum by ultra high performance liquid chromatography–tandem mass spectrometry using a procedure based on QuEChERS and dispersive liquid–liquid microextraction. Journal of Chromatography A, 2013, 1282, 11-19.	1.8	109
3	An overview of microplastics characterization by thermal analysis. Chemosphere, 2020, 242, 125170.	4.2	109
4	A new approach in sample treatment combined with UHPLC-MS/MS for the determination of multiclass mycotoxins in edible nuts and seeds. Talanta, 2013, 115, 61-67.	2.9	92
5	Alternative sample treatments for the determination of sulfonamides in milk by HPLC with fluorescence detection. Food Chemistry, 2014, 143, 459-464.	4.2	75
6	Untargeted headspace gas chromatography – Ion mobility spectrometry analysis for detection of adulterated honey. Talanta, 2019, 205, 120123.	2.9	75
7	Determination of ochratoxin A in wines by capillary liquid chromatography with laser induced fluorescence detection using dispersive liquid–liquid microextraction. Food Chemistry, 2012, 135, 368-372.	4.2	72
8	A robustness study of calibration models for olive oil classification: Targeted and non-targeted fingerprint approaches based on GC-IMS. Food Chemistry, 2019, 288, 315-324.	4.2	72
9	Transcriptome Analysis of Aspergillus flavus Reveals <i>veA</i> -Dependent Regulation of Secondary Metabolite Gene Clusters, Including the Novel Aflavarin Cluster. Eukaryotic Cell, 2015, 14, 983-997.	3.4	67
10	HS-GC-IMS and chemometric data treatment for food authenticity assessment: Olive oil mapping and classification through two different devices as an example. Food Control, 2019, 98, 82-93.	2.8	63
11	Use of a non-destructive sampling method for characterization of Iberian cured ham breed and feeding regime using GC-IMS. Meat Science, 2019, 152, 146-154.	2.7	58
12	Multi-Mycotoxin Occurrence and Exposure Assessment Approach in Foodstuffs from Algeria. Toxins, 2020, 12, 194.	1.5	57
13	Method optimization and validation for the determination of eight sulfonamides in chicken muscle and eggs by modified QuEChERS and liquid chromatography with fluorescence detection. Journal of Pharmaceutical and Biomedical Analysis, 2016, 124, 261-266.	1.4	53
14	Destruxin A production by <i>Metarhizium brunneum</i> strains during transient endophytic colonisation of <i>Solanum tuberosum</i> . Biocontrol Science and Technology, 2016, 26, 1574-1585.	0.5	53
15	Simple methodology for the determination of mycotoxins in pseudocereals, spelt and rice. Food Control, 2014, 36, 94-101.	2.8	52
16	Simple determination of aflatoxins in rice by ultra-high performance liquid chromatography coupled to chemical post-column derivatization and fluorescence detection. Food Chemistry, 2018, 245, 189-195.	4.2	45
17	Simple and efficient methodology to determine mycotoxins in cereal syrups. Food Chemistry, 2015, 177, 274-279.	4.2	42
18	Unravelling the Diversity of the Cyclopiazonic Acid Family of Mycotoxins in Aspergillus flavus by UHPLC Triple-TOF HRMS. Toxins, 2017, 9, 35.	1.5	40

#	Article	IF	CITATIONS
19	Solid phase extraction as sample treatment for the determination of Ochratoxin A in foods: A review. Critical Reviews in Food Science and Nutrition, 2017, 57, 3405-3420.	5.4	37
20	In-house validation of a rapid and efficient procedure for simultaneous determination of ergot alkaloids and other mycotoxins in wheat and maize. Analytical and Bioanalytical Chemistry, 2018, 410, 5567-5581.	1.9	37
21	Occurrence of Mycotoxins in Swine Feeding from Spain. Toxins, 2019, 11, 342.	1.5	34
22	Comparison of different sample treatments for the analysis of ochratoxin A in wine by capillary HPLC with laser-induced fluorescence detection. Analytical and Bioanalytical Chemistry, 2011, 401, 2987-2994.	1.9	32
23	Onâ€line preconcentration for the determination of aflatoxins in rice samples by micellar electrokinetic capillary chromatography with laserâ€induced fluorescence detection. Electrophoresis, 2010, 31, 2180-2185.	1.3	27
24	<i>Aspergillus</i> section <i>Flavi</i> and aflatoxins in dried figs and nuts in Algeria. Food Additives and Contaminants: Part B Surveillance, 2018, 11, 119-125.	1.3	27
25	Bioaccumulation of Polycyclic Aromatic Hydrocarbons for Forensic Assessment Using Gas Chromatography–Mass Spectrometry. Chemical Research in Toxicology, 2019, 32, 1680-1688.	1.7	27
26	High-resolution mass spectrometry for the determination of mycotoxins in biological samples. A review. Microchemical Journal, 2021, 166, 106197.	2.3	25
27	Identification of novel metabolites from <i>Aspergillus flavus</i> by high resolution and multiple stage mass spectrometry. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 111-120.	1.1	24
28	Aflatoxins in animal feeds: A straightforward and cost-effective analytical method. Food Control, 2015, 54, 74-78.	2.8	24
29	Determination of Aflatoxins in Plant-based Milk and Dairy Products by Dispersive Liquid–Liquid Microextraction and High-performance Liquid Chromatography with Fluorescence Detection. Analytical Letters, 2019, 52, 363-372.	1.0	24
30	Secondary Metabolite Dereplication and Phylogenetic Analysis Identify Various Emerging Mycotoxins and Reveal the High Intra-Species Diversity in Aspergillus flavus. Frontiers in Microbiology, 2019, 10, 667.	1.5	24
31	Assessing the level of airborne polystyrene microplastics using thermogravimetry-mass spectrometry: Results for an agricultural area. Science of the Total Environment, 2021, 787, 147656.	3.9	24
32	Holistic approach based on high resolution and multiple stage mass spectrometry to investigate ergot alkaloids in cereals. Talanta, 2014, 118, 359-367.	2.9	23
33	Aspergillus flavus aswA , a gene homolog of Aspergillus nidulans oefC , regulates sclerotial development and biosynthesis of sclerotium-associated secondary metabolites. Fungal Genetics and Biology, 2017, 104, 29-37.	0.9	23
34	High-throughput determination of citrinin in rice by ultra-high-performance liquid chromatography and fluorescence detection (UHPLC-FL). Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 1352-1357.	1.1	21
35	Effect of Allium Extract Supplementation on Egg Quality, Productivity, and Intestinal Microbiota of Laying Hens. Animals, 2021, 11, 41.	1.0	20
36	Determination of sulfonamides in serum by on-line solid-phase extraction coupled to liquid chromatography with photoinduced fluorescence detection. Talanta, 2015, 138, 258-262.	2.9	19

#	Article	IF	CITATIONS
37	Determination of Fusarium toxins in functional vegetable milks applying salting-out-assisted liquid–liquid extraction combined with ultra-high-performance liquid chromatography tandem mass spectrometry. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment. 2017, 34. 2033-2041.	1.1	19
38	Headspace Gas Chromatography Coupled to Mass Spectrometry and Ion Mobility Spectrometry: Classification of Virgin Olive Oils as a Study Case. Foods, 2020, 9, 1288.	1.9	19
39	Targeted and untargeted gas chromatography-mass spectrometry analysis of honey samples for determination of migrants from plastic packages. Food Chemistry, 2021, 334, 127547.	4.2	19
40	Mycotoxin Analysis: New Proposals for Sample Treatment. Advances in Chemistry, 2014, 2014, 1-12.	1.1	18
41	Use of UHPLC high-resolution Orbitrap mass spectrometry to investigate the genes involved in the production of secondary metabolites inAspergillus flavus. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 1656-1673.	1.1	18
42	A high-throughput method for the determination of quinolones in different matrices by ultra-high performance liquid chromatography with fluorescence detection. Analytical Methods, 2015, 7, 253-259.	1.3	17
43	Aphids transform and detoxify the mycotoxin deoxynivalenol via a type II biotransformation mechanism yet unknown in animals. Scientific Reports, 2016, 6, 38640.	1.6	17
44	Use of Onion Extract as a Dairy Cattle Feed Supplement: Monitoring Propyl Propane Thiosulfonate as a Marker of Its Effect on Milk Attributes. Journal of Agricultural and Food Chemistry, 2017, 65, 793-799.	2.4	17
45	Thermal desorption-ion mobility spectrometry: A rapid sensor for the detection of cannabinoids and discrimination of Cannabis sativa L. chemotypes. Sensors and Actuators B: Chemical, 2018, 273, 1413-1424.	4.0	17
46	A rapid and simple UHPLC-ESI-MS/MS method for the screening of propyl propane thiosulfonate, a new additive for animal feed. Analytical Methods, 2016, 8, 3730-3739.	1.3	16
47	Determination of amphenicol antibiotics and their glucuronide metabolites in urine samples using liquid chromatography with quadrupole time-of-flight mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1146, 122122.	1.2	16
48	Dispersive Solid-Phase Extraction using Magnetic Carbon Nanotube Composite for the Determination of Emergent Mycotoxins in Urine Samples. Toxins, 2020, 12, 51.	1.5	16
49	High-Performance Liquid Chromatography Method for the Monitoring of the Allium Derivative Propyl Propane Thiosulfonate Used as Natural Additive in Animal Feed. Food Analytical Methods, 2015, 8, 916-921.	1.3	15
50	Development of a QuEChERS-based extraction method for the determination of destruxins in potato plants by UHPLC–MS/MS. Talanta, 2016, 146, 815-822.	2.9	15
51	Determination of Cyanotoxins and Phycotoxins in Seawater and Algae-Based Food Supplements Using Ionic Liquids and Liquid Chromatography with Time-Of-Flight Mass Spectrometry. Toxins, 2019, 11, 610.	1.5	15
52	Plant-based milks: unexplored source of emerging mycotoxins. A proposal for the control of enniatins and beauvericin using UHPLC-MS/MS. Food Additives and Contaminants: Part B Surveillance, 2019, 12, 296-302.	1.3	14
53	Dual stir bar sorptive extraction coupled to thermal desorption-gas chromatography-mass spectrometry for the determination of endocrine disruptors in human tissues. Talanta, 2020, 207, 120331.	2.9	14
54	Exploration of the potential of different analytical techniques to authenticate organic vs. conventional olives and olive oils from two varieties using untargeted fingerprinting approaches. Food Control, 2021, 124, 107828.	2.8	13

#	Article	IF	CITATIONS
55	Analytical strategy for determination of known and unknown destruxins using hybrid quadrupole-Orbitrap high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 2017, 409, 3347-3357.	1.9	12
56	Effects of different vehiculization strategies for the allium derivative propyl propane thiosulfonate during dynamic simulation of the pig gastrointestinal tract. Canadian Journal of Animal Science, 2019, 99, 244-253.	0.7	12
57	Authentication of recycled plastic content in water bottles using volatile fingerprint and chemometrics. Chemosphere, 2022, 297, 134156.	4.2	12
58	Use of whole electrophoretic profile and chemometric tools for the differentiation of three olive oil qualities. Talanta, 2019, 197, 175-180.	2.9	11
59	Quality authentication of virgin olive oils using orthogonal techniques and chemometrics based on individual and high-level data fusion information. Talanta, 2020, 219, 121260.	2.9	10
60	Cellulose-ferrite nanocomposite for monitoring enniatins and beauvericins in paprika by liquid chromatography and high-resolution mass spectrometry. Talanta, 2021, 226, 122144.	2.9	10
61	Non-targeted analysis by DLLME-GC-MS for the monitoring of pollutants in the Mar Menor lagoon. Chemosphere, 2022, 286, 131588.	4.2	10
62	Head-space gas chromatography coupled to mass spectrometry for the assessment of the contamination of mayonnaise by yeasts. Food Chemistry, 2019, 289, 461-467.	4.2	9
63	Toward Nitrite-Free Curing: Evaluation of a New Approach to Distinguish Real Uncured Meat from Cured Meat Made with Nitrite. Foods, 2021, 10, 313.	1.9	9
64	Occurrence of Ergot Alkaloids in Barley and Wheat from Algeria. Toxins, 2021, 13, 316.	1.5	9
65	Hydrophilic interaction liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry for determination of nuclear and cytoplasmatic contents of nucleotides, nucleosides and their nucleobases in food yeasts. Talanta Open, 2021, 4, 100064.	1.7	9
66	Innovative coupling of supercritical fluid extraction with ion mobility spectrometry. Talanta, 2018, 188, 637-643.	2.9	8
67	Determination of principal ergot alkaloids in swine feeding. Journal of the Science of Food and Agriculture, 2021, 101, 5214-5224.	1.7	8
68	An integrated targeted and untargeted approach for the analysis of ergot alkaloids in cereals using UHPLC – hybrid quadrupole time-of-flight mass spectrometry. World Mycotoxin Journal, 2015, 8, 653-666.	0.8	7
69	Production of destruxins by Metarhizium strains under different stress conditions and their detection by using UHPLC-MS/MS. Biocontrol Science and Technology, 2016, 26, 1298-1311.	0.5	7
70	Ion mobility spectrometry and mass spectrometry coupled to gas chromatography for analysis of microbial contaminated cosmetic creams. Analytica Chimica Acta, 2020, 1128, 52-61.	2.6	6
71	A rapid dispersive liquid–liquid microextraction of antimicrobial onion organosulfur compounds in animal feed coupled to gas chromatography-mass spectrometry. Analytical Methods, 2020, 12, 2668-2673.	1.3	6
72	Ultrasound Assisted Extraction Approach to Test the Effect of Elastic Rubber Nettings on the N-Nitrosamines Content of Ham Meat Samples. Foods, 2021, 10, 2564.	1.9	6

#	Article	IF	CITATIONS
73	Application of LC–MS/MS in the Mycotoxins Studies. Toxins, 2020, 12, 272.	1.5	5
74	Portable Raman Spectrometer as a Screening Tool for Characterization of Iberian Dry-Cured Ham. Foods, 2021, 10, 1177.	1.9	5
75	Ion mobility spectrometry as an emerging tool for characterization of the volatile profile and identification of microbial growth in pomegranate juice. Microchemical Journal, 2022, 174, 107099.	2.3	5
76	Ergot Alkaloids: Chemistry, Biosynthesis, Bioactivity, and Methods of Analysis. , 2016, , 1-43.		4
77	Metabolomic study of capsaicinoid compounds in urine samples by dispersive liquid–liquid microextraction and ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Microchemical Journal, 2022, 178, 107373.	2.3	4
78	CE method for analyzing <i>Salmonella typhimurium</i> in water samples. Journal of Separation Science, 2018, 41, 534-539.	1.3	2
79	Ergot Alkaloids: Chemistry, Biosynthesis, Bioactivity, and Methods of Analysis. , 2017, , 887-929.		2
80	Determination of Aflatoxins by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. , 0, , .		1
81	Nucleobases, Nucleosides and Nucleotides Determination in Yeasts Isolated from Extreme Environments. Chromatographia, 2022, 85, 353-363.	0.7	1
82	Instrumental Techniques to Classify Olive Oils according to Their Quality. Critical Reviews in Analytical Chemistry, 2021, , 1-22.	1.8	0