Edjah K Nduom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2337965/publications.pdf

Version: 2024-02-01

430442 329751 60 1,722 18 37 citations g-index h-index papers 64 64 64 3421 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Hypothetical generalized framework for a new imaging endpoint of therapeutic activity in early phase clinical trials in brain tumors. Neuro-Oncology, 2022, 24, 1219-1229.	0.6	9
2	Clinical and radiographic characteristics of diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma: a single institution review. Journal of Neuro-Oncology, 2022, 157, 187-195.	1.4	6
3	Distinct phenotypic states and spatial distribution of CD8+ TÂcell clonotypes in human brain metastases. Cell Reports Medicine, 2022, 3, 100620.	3.3	29
4	Letter to the Editor. Diversity-related studies in neurosurgery: concerns and suggestions. Journal of Neurosurgery: Spine, 2022, 37, 781-782.	0.9	0
5	Letter: A Proposal for Medical Student Inclusion on the Editorial Boards of Neurosurgical Journals. Neurosurgery Open, 2021, 2, .	0.7	1
6	Letter: A Call to Action: Increasing Black Representation in Neurological Surgery. Neurosurgery, 2021, 88, E469-E473.	0.6	15
7	Why would a Black man volunteer for a government-funded science experiment?. EClinicalMedicine, 2021, 33, 100788.	3.2	0
8	Re-evaluating Biopsy for Recurrent Glioblastoma: A Position Statement by the Christopher Davidson Forum Investigators. Neurosurgery, 2021, 89, 129-132.	0.6	5
9	A Crowdsourced Consensus on Supratotal Resection Versus Gross Total Resection for Anatomically Distinct Primary Glioblastoma. Neurosurgery, 2021, 89, 712-719.	0.6	19
10	Resection of Myxopapillary Ependymoma of the Filum Terminale: 2-Dimensional Operative Video. Operative Neurosurgery, 2020, 18, E40-E40.	0.4	0
11	SNO 25th anniversary history series: Providing a global platform for communication and exchange in neuro-oncology. Neuro-Oncology, 2020, 22, 1551-1552.	0.6	4
12	Induction of Immune Response against Metastatic Tumors via Vaccination of Mannanâ€BAM, TLR Ligands, and Anti D40 Antibody (MBTA). Advanced Therapeutics, 2020, 3, 2000044.	1.6	11
13	Variations in attitudes towards stereotactic biopsy of adult diffuse midline glioma patients: a survey of members of the AANS/CNS Tumor Section. Journal of Neuro-Oncology, 2020, 149, 161-170.	1.4	3
14	Metastases to the Central Nervous System: A Comprehensive Guide on Current Management and Future Directions. Neurosurgery Clinics of North America, 2020, 31, xiii-xiv.	0.8	0
15	Metastases to the Central Nervous System. Neurosurgery Clinics of North America, 2020, 31, i.	0.8	0
16	Biomarkers for immunotherapy for treatment of glioblastoma. , 2020, 8, e000348.		33
17	GL261 luciferase-expressing cells elicit an anti-tumor immune response: an evaluation of murine glioma models. Scientific Reports, 2020, 10, 11003.	1.6	24
18	Case Report: Single-Cell Transcriptomic Analysis of an Anaplastic Oligodendroglioma Post Immunotherapy. Frontiers in Oncology, 2020, 10, 601452.	1.3	1

#	Article	IF	CITATIONS
19	Brain Tumor Discussions on Twitter (#BTSM): Social Network Analysis. Journal of Medical Internet Research, 2020, 22, e22005.	2.1	11
20	A first-in-human phase I single-agent dose-escalation, food effect and dose expansion study of oral ONC206 in recurrent and rare primary central nervous system neoplasms Journal of Clinical Oncology, 2020, 38, TPS2576-TPS2576.	0.8	O
21	SURG-21. A CROWDSOURCED CONSENSUS ON SUPRATOTAL RESECTION VERSUS GROSS TOTAL RESECTION FOR ANATOMICALLY DISTINCT PRIMARY GLIOBLASTOMA. Neuro-Oncology, 2020, 22, ii207-ii208.	0.6	0
22	Programmed Death Ligand 1 Is a Negative Prognostic Marker in Recurrent Isocitrate Dehydrogenase-Wildtype Glioblastoma. Neurosurgery, 2019, 85, 280-289.	0.6	22
23	The Luciferase-Expressing Glioma-261 Murine Models Elicit an Immune-Mediated Antitumor Response. Neurosurgery, 2019, 66, .	0.6	O
24	Young Neurosurgeons Committee of the American Association of Neurological Surgeons: Training Ground for Future Leaders in Organized Neurosurgery in the United States of America. World Neurosurgery, 2019, 123, 59-63.	0.7	9
25	TMOD-32. GL261 LUCIFERASE-EXPRESSING CELLS ELICIT AN ANTI-TUMOR IMMUNE RESPONSE: AN EVALUATION OF MURINE GLIOMA MODELS. Neuro-Oncology, 2019, 21, vi269-vi270.	0.6	0
26	EPID-30. A TWITTER-BASED NETWORK ANALYSIS OF BRAIN TUMOR SOCIAL MEDIA (#BTSM). Neuro-Oncology, 2019, 21, vi81-vi81.	0.6	0
27	TMIC-28. LONG NON-CODING RNA EXPRESSION DIFFERS BETWEEN GLIOBLASTOMA PATIENT IMMUNE CELLS AND HEALTHY VOLUNTEERS. Neuro-Oncology, 2019, 21, vi253-vi253.	0.6	O
28	Cytokine Microdialysis for Real-Time Immune Monitoring in Glioblastoma Patients Undergoing Checkpoint Blockade. Neurosurgery, 2019, 84, 945-953.	0.6	24
29	Efficient ADCC killing of meningioma by avelumab and a high-affinity natural killer cell line, haNK. JCI Insight, 2019, 4, .	2.3	40
30	TMOD-05. GLIOMA-261 LUCIFERASE-EXPRESSING CELL LINE STIMULATES AN IMMUNOGENIC RESPONSE SIGNATURE IN AN IMMUNOCOMPETENT MURINE MODEL. Neuro-Oncology, 2018, 20, vi269-vi269.	0.6	1
31	IMMU-68. SINGLE-CELL PROTEOMIC ANALYSIS OF IMMUNE CELL RESPONSE TO CHECKPOINT BLOCKADE USING 30-PARAMETER FLOW CYTOMETRY. Neuro-Oncology, 2018, 20, vi137-vi137.	0.6	O
32	RARE-26. MUTATIONS IN MAPK PATHWAY GENES ARE CHARACTERISTIC AND CONFIRMATORY OF MULTINODULAR AND VACUOLATING NEURONAL TUMOR OF THE CEREBRUM. Neuro-Oncology, 2018, 20, vi241-vi241.	0.6	0
33	Current Options and Future Directions in Immune Therapy for Glioblastoma. Frontiers in Oncology, 2018, 8, 578.	1.3	21
34	The effect of an adenosine A2A agonist on intra-tumoral concentrations of temozolomide in patients with recurrent glioblastoma. Fluids and Barriers of the CNS, 2018, 15, 2.	2.4	55
35	Clinical decision making in the era of immunotherapy for high grade-glioma: report of four cases. BMC Cancer, 2018, 18, 239.	1.1	38
36	ACTR-85. THE EFFECT OF REGADENOSON ON TEMOZOLOMIDE NEUROPHARMACOKINETICS IN GLIOBLASTOMA PATIENTS MEASURED BY INTRACEREBRAL MICRODIALYSIS. Neuro-Oncology, 2017, 19, vi19-vi19.	0.6	0

#	Article	IF	Citations
37	IMMU-02. VALIDATION OF PD-L1 EXPRESSION IN HIGH GRADE GLIOMAS AS AN INDEPENDENT NEGATIVE PROGNOSTIC MARKER. Neuro-Oncology, 2017, 19, vi112-vi112.	0.6	O
38	CBIO-11. UPREGULATION OF THE TGF- \hat{l}^2 PATHWAY DRIVES TRANSFORMATION OF GLIOBLASTOMA INTO GLIOSARCOMA AND OSTEOSARCOMA. Neuro-Oncology, 2017, 19, vi35-vi35.	0.6	0
39	Immune modulatory nanoparticle therapeutics for intracerebral glioma. Neuro-Oncology, 2016, 19, now198.	0.6	23
40	MiR-138 exerts anti-glioma efficacy by targeting immune checkpoints. Neuro-Oncology, 2016, 18, 639-648.	0.6	161
41	PD-L1 expression and prognostic impact in glioblastoma. Neuro-Oncology, 2016, 18, 195-205.	0.6	463
42	IMPS-28PD-L1 EXPRESSION AND PROGNOSTIC IMPACT IN GLIOBLASTOMA. Neuro-Oncology, 2015, 17, v119.2-v119.	0.6	3
43	IMPS-41IMMUNE MODULATORY NANOPARTICLE THERAPEUTICS. Neuro-Oncology, 2015, 17, v122.1-v122.	0.6	0
44	Immunosuppressive mechanisms in glioblastoma: Fig. 1 Neuro-Oncology, 2015, 17, vii9-vii14.	0.6	275
45	Abstract 4291: An optimized therapeutic nanoparticle delivery platform of miRNA in preclinical murine models of malignancy. , 2015, , .		1
46	Effect of miR-142-3p on the M2 Macrophage and Therapeutic Efficacy Against Murine Glioblastoma. Journal of the National Cancer Institute, 2014, 106, .	3.0	112
47	IT-22 * TARGETING THE IMMUNE CHECKPOINT NETWORK WITH miR-138 EXERTS THERAPEUTIC EFFICACY IN MURINE MODELS OF GLIOMA. Neuro-Oncology, 2014, 16, v114-v114.	0.6	0
48	Blood-brain barrier. Response. Journal of Neurosurgery, 2014, 120, 291.	0.9	2
49	miR-138 exerts anti-glioma efficacy by targeting immune checkpoints. , 2013, 1, .		3
50	Transnasal approaches to the sellar and parasellar region: Open and endoscopic. Operative Techniques in Otolaryngology - Head and Neck Surgery, 2013, 24, 208-212.	0.1	1
51	Characterization of the blood-brain barrier of metastatic and primary malignant neoplasms. Journal of Neurosurgery, 2013, 119, 427-433.	0.9	102
52	Imaging detection of endolymphatic sac tumor–associated hydrops. Journal of Neurosurgery, 2013, 119, 406-411.	0.9	15
53	Neuroendoscopic Resection of Intraventricular Tumors and Cysts through a Working Channel with a Variable Aspiration Tissue Resector: A Feasibility and Safety Study. Minimally Invasive Surgery, 2013, 2013, 1-8.	0.1	3
54	Glioblastoma Cancer Stem-Like Cells. Cancer Journal (Sudbury, Mass), 2012, 18, 100-106.	1.0	51

#	Article	IF	CITATION
55	Comparison of pulsed versus continuous convective flow for central nervous system tissue perfusion. Journal of Neurosurgery, 2012, 117, 1150-1154.	0.9	8
56	Nanotechnology Applications for Glioblastoma. Neurosurgery Clinics of North America, 2012, 23, 439-449.	0.8	29
57	Canine Model of Convection-Enhanced Delivery of Cetuximab-Conjugated Iron-Oxide Nanoparticles Monitored With Magnetic Resonance Imaging. Neurosurgery, 2012, 59, 107-113.	0.6	31
58	Treatment of Brainstem Hemangioblastomas. , 2012, , 231-238.		0
59	Acute Lung Injury Is an Independent Risk Factor for Brain Hypoxia After Severe Traumatic Brain Injury. Neurosurgery, 2010, 67, 338-344.	0.6	57
60	Abstract 3335: Identification of candidate proteins for the targeted imaging and therapy of glioma stem cells: Effect of antibody-conjugated magnetic nanoparticles and proteasomal inhibitor bortezomib on GBM-derived neurospheres and glioma stem cell marker CD133., 2010,,.		0