Ying-Yeung Yeung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2337732/publications.pdf

Version: 2024-02-01

89 papers 5,066 citations

39 h-index 91884 69 g-index

93 all docs 93 docs citations 93 times ranked 3082 citing authors

#	Article	IF	CITATIONS
1	Autocatalytic aerobic <i>ipso</i> -hydroxylation of arylboronic acid with Hantzsch ester and Hantzsch pyridine. Organic Chemistry Frontiers, 2022, 9, 4091-4096.	4.5	6
2	Zwitterion-Catalyzed Isomerization of Maleic to Fumaric Acid Diesters. Journal of Organic Chemistry, 2021, 86, 1183-1190.	3.2	12
3	Solvent and catalyst-free bromofunctionalization of olefins using a mechanochemical approach. RSC Advances, 2021, 11, 13564-13570.	3.6	11
4	Zwitterion-Induced Organic–Metal Hybrid Catalysis in Aerobic Oxidation. ACS Catalysis, 2021, 11, 3498-3506.	11.2	9
5	Zwitterionâ€Catalyzed Aminoâ€Dibromination of Nitroalkenes: Scope, Mechanism, and Application to The Synthesis of Glycinamides. Asian Journal of Organic Chemistry, 2021, 10, 1131-1140.	2.7	6
6	Recent Advances in C–Br Bond Formation. Synlett, 2021, 32, 1354-1364.	1.8	4
7	Silver Salt-Mediated Allylation Reactions Using Allyl Bromides. Journal of Organic Chemistry, 2021, 86, 6974-6982.	3.2	4
8	A Catalyst-Controlled Enantiodivergent Bromolactonization. Journal of the American Chemical Society, 2021, 143, 12745-12754.	13.7	26
9	Catalytic Enantioselective Halocyclizations to Access Benzoxazepinones and Benzoxazecinones. Organic Letters, 2021, 23, 6316-6320.	4.6	9
10	Bis-selenonium Cations as Bidentate Chalcogen Bond Donors in Catalysis. ACS Catalysis, 2021, 11, 12632-12642.	11.2	31
11	Lewis Base Catalyzed Dioxygenation of Olefins with Hypervalent Iodine Reagents. Organic Letters, 2021, 23, 8174-8178.	4.6	9
12	Access to Bromo- \hat{l}^3 -butenolides via Zwitterion-Catalyzed Rearrangement of Cyclopropene Carboxylic Acids. Organic Letters, 2021, 23, 9533-9537.	4.6	8
13	Boron tribromide as a reagent for anti-Markovnikov addition of HBr to cyclopropanes. Chemical Science, 2020, 11 , 9426 - 9433 .	7.4	11
14	Zwitterion-Catalyzed Deacylative Dihalogenation of β-Oxo Amides. Organic Letters, 2020, 22, 7353-7357.	4.6	16
15	Catalytic enantio- and diastereoselective domino halocyclization and spiroketalization. Nature Catalysis, 2020, 3, 993-1001.	34.4	48
16	Intermolecular Electrophilic Bromoesterification and Bromoetherification of Unactivated Cyclopropanes. Advanced Synthesis and Catalysis, 2020, 362, 2039-2044.	4.3	13
17	Zwitterion-Catalyzed Intermolecular Bromoesterifications. Organic Letters, 2020, 22, 5572-5576.	4.6	16
18	Lipophilic indole mediated chemoselective $\hat{l}\pm$ -monobromination of 1,3-dicarbonyl compounds. Tetrahedron Letters, 2020, 61, 151772.	1.4	4

#	Article	IF	CITATIONS
19	Halogen-Bond-Catalyzed Addition of Carbon-Based Nucleophiles to <i>N</i> -Acylimminium Ions. Organic Letters, 2019, 21, 5665-5669.	4.6	38
20	Amide/Iminium Zwitterionic Catalysts for (Trans)esterification: Application in Biodiesel Synthesis. ACS Catalysis, 2019, 9, 8083-8092.	11.2	28
21	Enantioselective Fluorocyclizations Mediated by Aminoâ€Acidâ€Derived Phthalazine. Advanced Synthesis and Catalysis, 2019, 361, 5334-5339.	4.3	19
22	The complexity of a monogenic neurodegenerative disease: More than two decades of therapeutic driven research into Niemann-Pick type C disease. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1109-1123.	2.4	42
23	Lipophilic Indole-Catalyzed Intermolecular Bromoesterification of Olefins in Nonpolar Media. Journal of Organic Chemistry, 2019, 84, 4017-4024.	3.2	11
24	Halogen Bond Catalyzed Bromocarbocyclization. Angewandte Chemie, 2018, 130, 3541-3545.	2.0	14
25	Metalâ€Free Allylic Oxidation of Steroids Using TBAI/TBHP Organocatalytic Protocol. Chemistry - an Asian Journal, 2018, 13, 2369-2372.	3.3	4
26	Lewis Baseâ€Promoted Ringâ€Opening 1,3â€Dioxygenation of Unactivated Cyclopropanes Using a Hypervalent lodine Reagent. Angewandte Chemie, 2018, 130, 3844-3848.	2.0	15
27	Halogen Bond Catalyzed Bromocarbocyclization. Angewandte Chemie - International Edition, 2018, 57, 3483-3487.	13.8	86
28	Lewis Baseâ€Promoted Ringâ€Opening 1,3â€Dioxygenation of Unactivated Cyclopropanes Using a Hypervalent lodine Reagent. Angewandte Chemie - International Edition, 2018, 57, 3782-3786.	13.8	40
29	Bioactivity-Guided Metabolite Profiling of Feijoa (<i>Acca sellowiana</i>) Cultivars Identifies 4-Cyclopentene-1,3-dione as a Potent Antifungal Inhibitor of Chitin Synthesis. Journal of Agricultural and Food Chemistry, 2018, 66, 5531-5539.	5.2	19
30	Ammonium Salt-Catalyzed Highly Practical <i>Ortho</i> Phenylselenation of Phenols: Scope and Applications. ACS Catalysis, 2018, 8, 4033-4043.	11.2	77
31	Desymmetrizing Enantio- and Diastereoselective Selenoetherification through Supramolecular Catalysis. ACS Catalysis, 2018, 8, 850-858.	11.2	62
32	Mild and Efficient Vicinal Dibromination of Olefins Mediated by Aqueous Ammonium Fluoride. Synlett, 2018, 29, 419-424.	1.8	8
33	Enantioseletive Fluorination of 3â€Functionalized Oxindoles Using Electronâ€rich Amino Urea Catalyst. Advanced Synthesis and Catalysis, 2018, 360, 4710-4714.	4.3	11
34	Environmentally benign indole-catalyzed position-selective halogenation of thioarenes and other aromatics. Green Chemistry, 2018, 20, 4448-4452.	9.0	27
35	Electrophilic Bromolactonization of Cyclopropyl Diesters Using Lewis Basic Chalcogenide Catalysts. Advanced Synthesis and Catalysis, 2018, 360, 4306-4311.	4.3	24
36	Applications of Selenonium Cations as Lewis Acids in Organocatalytic Reactions. Angewandte Chemie - International Edition, 2018, 57, 12869-12873.	13.8	65

#	Article	IF	CITATIONS
37	Enantioselective Bromolactonization of Deactivated Olefinic Acids. Organic Letters, 2018, 20, 3259-3262.	4.6	33
38	Applications of Selenonium Cations as Lewis Acids in Organocatalytic Reactions. Angewandte Chemie, 2018, 130, 13051-13055.	2.0	16
39	Atmosphere―and Temperatureâ€Controlled Regioselective Aminobromination of Olefins. Advanced Synthesis and Catalysis, 2017, 359, 234-239.	4.3	16
40	Synthesis of Macrocyclic Ketones through Catalyst-Free Electrophilic Halogen-Mediated Semipinacol Rearrangement: Application to the Total Synthesis of $(\hat{A}\pm)$ -Muscone. Organic Letters, 2017, 19, 1422-1425.	4.6	24
41	Accessing Axially Chiral Biaryls via Organocatalytic Enantioselective Dynamic-Kinetic Resolution-Semipinacol Rearrangement. ACS Catalysis, 2017, 7, 4435-4440.	11.2	69
42	Normalization of Hepatic Homeostasis in the Npc1 Mouse Model of Niemann-Pick Type C Disease Treated with the Histone Deacetylase Inhibitor Vorinostat. Journal of Biological Chemistry, 2017, 292, 4395-4410.	3.4	28
43	Ring strain-dictated divergent fluorinating Prins cyclization or semipinacol rearrangement. Organic and Biomolecular Chemistry, 2017, 15, 6478-6482.	2.8	11
44	Zwitterionic-Salt-Catalyzed Site-Selective Monobromination of Arenes. Organic Letters, 2017, 19, 4243-4246.	4.6	51
45	Lewis Base Catalyzed Stereo―and Regioselective Bromocyclization. Chemical Record, 2017, 17, 287-311.	5.8	61
46	Highly <i>ortho</i> â€Selective Chlorination of Anilines Using a Secondary Ammonium Salt Organocatalyst. Angewandte Chemie - International Edition, 2016, 55, 16101-16105.	13.8	57
47	Highly <i>ortho</i> â€Selective Chlorination of Anilines Using a Secondary Ammonium Salt Organocatalyst. Angewandte Chemie, 2016, 128, 16335-16339.	2.0	13
48	A convenient method for the synthesis of $\hat{l}\pm$ -carboxylate ester bromolactones via bromolactonization of alkenoic diesters. Organic and Biomolecular Chemistry, 2016, 14, 3202-3206.	2.8	7
49	Trifluoroacetic acid catalyzed highly regioselective bromocyclization of styrene-type carboxylic acid. Organic and Biomolecular Chemistry, 2016, 14, 4571-4575.	2.8	25
50	Electrophilic Bromolactonization of Cyclopropyl Carboxylic Acids Using Lewis Basic Sulfide Catalyst. Advanced Synthesis and Catalysis, 2016, 358, 1719-1724.	4.3	33
51	Catalytic and enantioselective bromoetherification of olefinic 1,3-diols: mechanistic insight. Tetrahedron, 2016, 72, 2683-2689.	1.9	29
52	An unexpected Bromolactamization of Olefinic Amides Using a Three-Component Co-catalyst System. Journal of Organic Chemistry, 2016, 81, 545-552.	3.2	14
53	Carbamateâ€Catalyzed Enantioselective Bromolactamization. Angewandte Chemie - International Edition, 2015, 54, 12102-12106.	13.8	60
54	An Unexpected 2,3-Dihydrofuran Derivative Ring Opening Initiated by Electrophilic Bromination: Scope and Mechanistic Study. Journal of Organic Chemistry, 2015, 80, 453-459.	3.2	12

#	Article	IF	CITATIONS
55	Catalyst-Free and Metal-Free Electrophilic Bromoamidation of Unactivated Olefins Using the <i>N</i> -Bromosuccinimide/Sulfonamide Protocol. Journal of Organic Chemistry, 2015, 80, 2815-2821.	3.2	32
56	Indole-Catalyzed Bromolactonization in Lipophilic Solvent: A Solid–Liquid Phase Transfer Approach. ACS Catalysis, 2015, 5, 4751-4755.	11.2	37
57	Catalytic and Highly Enantioselective Selenolactonization. Organic Letters, 2015, 17, 1660-1663.	4.6	66
58	Lewis Basic Sulfide Catalyzed Electrophilic Bromocyclization of Cyclopropylmethyl Amide. Organic Letters, 2015, 17, 4944-4947.	4.6	41
59	Desymmetrization of Diolefinic Diols by Enantioselective Aminoâ€thiocarbamate atalyzed Bromoetherification: Synthesis of Chiral Spirocycles. Angewandte Chemie - International Edition, 2014, 53, 5161-5164.	13.8	84
60	<i>N</i> -Bromosuccinimide-Induced Aminocyclization–Aziridine Ring-Expansion Cascade: An Asymmetric and Highly Stereoselective Approach toward the Synthesis of Azepane. Organic Letters, 2014, 16, 2134-2137.	4.6	37
61	Stereoselective Bromofunctionalization of Alkenes. Chirality, 2014, 26, 328-343.	2.6	72
62	A Functional, Genome-wide Evaluation of Liposensitive Yeast Identifies the "RE2 Required for Viability― (ARV1) Gene Product as a Major Component of Eukaryotic Fatty Acid Resistance. Journal of Biological Chemistry, 2014, 289, 4417-4431.	3.4	28
63	Recent advances in asymmetric intra- and intermolecular halofunctionalizations of alkenes. Organic and Biomolecular Chemistry, 2014, 12, 2333-2343.	2.8	195
64	Catalytic Asymmetric Bromoetherification and Desymmetrization of Olefinic 1,3-Diols with $\langle i\rangle C\langle i\rangle \langle sub\rangle -Symmetric Sulfides$. Journal of the American Chemical Society, 2014, 136, 5627-5630.	13.7	167
65	Catalytic, Enantioselective, and Highly Chemoselective Bromocyclization of Olefinic Dicarbonyl Compounds. Angewandte Chemie - International Edition, 2013, 52, 8597-8601.	13.8	90
66	Recent advances in stereoselective bromofunctionalization of alkenes using N-bromoamide reagents. Chemical Communications, 2013, 49, 7985.	4.1	212
67	<i>C</i> ₂ -Symmetric Cyclic Selenium-Catalyzed Enantioselective Bromoaminocyclization. Journal of the American Chemical Society, 2013, 135, 1232-1235.	13.7	215
68	NBS-Initiated Electrophilic Phenoxyetherification of Olefins. Organic Letters, 2013, 15, 1906-1909.	4.6	12
69	Enantioselective synthesis of 2-substituted and 3-substituted piperidines through a bromoaminocyclization process. Chemical Communications, 2013, 49, 4412-4414.	4.1	74
70	A highly enantioselective approach towards 2-substituted 3-bromopyrrolidines. Organic and Biomolecular Chemistry, 2012, 10, 3808.	2.8	75
71	Efficient Medium Ring Size Bromolactonization Using a Sulfur-Based Zwitterionic Organocatalyst. Journal of the American Chemical Society, 2012, 134, 16492-16495.	13.7	108
72	An Enantioselective Approach toward 3,4-Dihydroisocoumarin through the Bromocyclization of Styrene-type Carboxylic Acids. Journal of Organic Chemistry, 2012, 77, 999-1009.	3.2	138

#	Article	IF	CITATIONS
73	Enantioselective bromolactonization of cis-1,2-disubstituted olefinic acids using an amino-thiocarbamate catalyst. Chemical Communications, 2012, 48, 5793.	4.1	116
74	Enantioselective Bromolactonization Using an <i>S</i> à€Alkyl Thiocarbamate Catalyst. Angewandte Chemie - International Edition, 2012, 51, 7771-7775.	13.8	154
75	Scope and Mechanistic Studies of Electrophilic Alkoxyetherification. Organic Letters, 2011, 13, 6456-6459.	4.6	27
76	Aminothiocarbamate-Catalyzed Asymmetric Bromolactonization of 1,2-Disubstituted Olefinic Acids. Organic Letters, 2011, 13, 2738-2741.	4.6	136
77	Enantioselective Bromoaminocyclization Using Amino–Thiocarbamate Catalysts. Journal of the American Chemical Society, 2011, 133, 9164-9167.	13.7	188
78	An Unexpected Oxidation of Unactivated Methylene C–H Using DIB/TBHP Protocol. Organic Letters, 2011, 13, 4308-4311.	4.6	56
79	N-Bromosuccinimide Promoted One-Pot Synthesis of Guanidine: Scope and Mechanism. Organic Letters, 2011, 13, 5804-5807.	4.6	43
80	Studies toward Lewis basic thiocarbamate and thiourea mediated bromolactonization: the effect of a trace amount of water on the reactivity and enantioselectivity. Tetrahedron Letters, 2011, 52, 4892-4895.	1.4	39
81	Organocatalytic Enantioselective Halolactonizations: Strategies of Halogen Activation. Synlett, 2011, 2011, 1335-1339.	1.8	45
82	Molecular sieves as an efficient and recyclable catalyst for bromolactonization and bromoacetoxylation reactions. Tetrahedron Letters, 2010, 51, 3433-3435.	1.4	23
83	Asymmetric Bromolactonization Using Amino-thiocarbamate Catalyst. Journal of the American Chemical Society, 2010, 132, 15474-15476.	13.7	301
84	An Unprecedented Method for the Generation of <i>tert</i> Potocol: Solvent Effect and Application on Allylic Oxidation. Organic Letters, 2010, 12, 2128-2131.	4.6	73
85	A Simple, Efficient, and Enantiocontrolled Synthesis of a Near-Structural Mimic of Platensimycin. Organic Letters, 2008, 10, 3877-3878.	4.6	49
86	Conversion of Torgov's Synthesis of Estrone into a Highly Enantioselective and Efficient Process. Journal of the American Chemical Society, 2007, 129, 10346-10347.	13.7	121
87	A Short Enantioselective Pathway for the Synthesis of the Anti-Influenza Neuramidase Inhibitor Oseltamivir from 1,3-Butadiene and Acrylic Acid. Journal of the American Chemical Society, 2006, 128, 6310-6311.	13.7	257
88	Mild Manganese(III) Acetate Catalyzed Allylic Oxidation:  Application to Simple and Complex Alkenes. Organic Letters, 2006, 8, 3149-3151.	4.6	183
89	A General Process for the Haloamidation of Olefins. Scope and Mechanism. Journal of the American Chemical Society, 2006, 128, 9644-9645.	13.7	137