
Suwan Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2337730/publications.pdf Version: 2024-02-01

SUMAN 7HII

#	Article	IF	CITATIONS
1	Sustaining Robust Cavities with Slippery Liquid–Liquid Interfaces. Advanced Science, 2022, 9, e2103568.	11.2	8
2	Anisotropic Sliding Behaviors of Gas Bubbles upon Ferrofluidâ€Infused Orthonormal Tracks (FOTs) Under Magnetic Stimuli. Advanced Materials Interfaces, 2022, 9, .	3.7	4
3	Robust Underwater Air Layer Retention and Restoration on <i>Salvinia</i> -Inspired Self-Grown Heterogeneous Architectures. ACS Nano, 2022, 16, 2730-2740.	14.6	18
4	Transparent Lightâ€Driven Hydrogel Actuator Based on Photothermal Marangoni Effect and Buoyancy Flow for Threeâ€Dimensional Motion. Advanced Functional Materials, 2021, 31, 2009386.	14.9	48
5	Light-driven Locomotion of Underwater Bubbles on Ultrarobust Paraffin-impregnated Laser-ablated Fe ₃ O ₄ -doped Slippery Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 9272-9280.	8.0	15
6	In Situ Electricâ€Induced Switchable Transparency and Wettability on Laserâ€Ablated Bioinspired Paraffinâ€Impregnated Slippery Surfaces. Advanced Science, 2021, 8, e2100701.	11.2	34
7	Magnetism-Actuated Superhydrophobic Flexible Microclaw: From Spatial Microdroplet Maneuvering to Cross-Species Control. ACS Applied Materials & Interfaces, 2021, 13, 35165-35172.	8.0	9
8	Biomimetic Mechanoswitchable Interfaces for High-Performance Spatial Gas Bubble Maneuvering. ACS Applied Materials & Interfaces, 2021, 13, 43769-43776.	8.0	2
9	Smart Control for Water Droplets on Temperature and Force Dual-Responsive Slippery Surfaces. Langmuir, 2021, 37, 578-584.	3.5	9
10	Ultralow-Voltage-Driven Smart Control of Diverse Drop's Anisotropic Sliding by in Situ Switching Joule Heat on Paraffin-Infused Microgrooved Slippery Surface. ACS Applied Materials & Interfaces, 2020, 12, 1895-1904.	8.0	31
11	High Performance Bubble Manipulation on Ferrofluid-Infused Laser-Ablated Microstructured Surfaces. Nano Letters, 2020, 20, 5513-5521.	9.1	63
12	Spontaneous and unidirectional transportation of underwater bubbles on superhydrophobic dual rails. Applied Physics Letters, 2020, 116, .	3.3	18
13	Unidirectional Transport and Effective Collection of Underwater CO ₂ Bubbles Utilizing Ultrafast-Laser-Ablated Janus Foam. ACS Applied Materials & Interfaces, 2020, 12, 18110-18115.	8.0	34
14	Hybrid femtosecond laser fabrication of a size-tunable microtrap chip with a high-trapping retention rate. Optics Letters, 2020, 45, 1071.	3.3	14
15	Remote Photothermal Actuation of Underwater Bubble toward Arbitrary Direction on Planar Slippery Fe ₃ O ₄ â€Doped Surfaces. Advanced Functional Materials, 2019, 29, 1904766.	14.9	59
16	Reversible Tuning between Isotropic and Anisotropic Sliding by One-Direction Mechanical Stretching on Microgrooved Slippery Surfaces. Langmuir, 2019, 35, 10625-10630.	3.5	31
17	Photothermal Actuation of Diverse Liquids on an Fe3O4-Doped Slippery Surface for Electric Switching and Cell Culture. Langmuir, 2019, 35, 13915-13922.	3.5	25
18	Smart Stretchable Janus Membranes with Tunable Collection Rate for Fog Harvesting. Advanced Materials Interfaces, 2019, 6, 1901465.	3.7	34

Suwan Zhu

#	Article	IF	CITATIONS
19	Large area metal micro-/nano-groove arrays with both structural color and anisotropic wetting fabricated by one-step focused laser interference lithography. Nanoscale, 2019, 11, 4803-4810.	5.6	63
20	Room-temperature NH3 sensing of graphene oxide film and its enhanced response on the laser-textured silicon. Scientific Reports, 2017, 7, 14773.	3.3	39
21	Crystallinity and Sub-Band Gap Absorption of Femtosecond-Laser Hyperdoped Silicon Formed in Different N-Containing Gas Mixtures. Materials, 2017, 10, 351.	2.9	6
22	A Fast Room Temperature NH3 Sensor Based on an Al/p-Si/Al Structure with Schottky Electrodes. Sensors, 2017, 17, 1929.	3.8	11