Sarah McFarlane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2337464/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Melaninâ€concentrating hormone like and somatolactin. A teleostâ€specific hypothalamicâ€hypophyseal axis system linking physiological and morphological pigmentation. Pigment Cell and Melanoma Research, 2021, 34, 564-574.	3.3	9
2	Semaphorin 3fa Controls Ocular Vascularization From the Embryo Through to the Adult. , 2021, 62, 21.		4
3	Retinal Pigment Epithelium and Neural Retinal Progenitors Interact via Semaphorin 6D to Facilitate Optic Cup Morphogenesis. ENeuro, 2021, 8, ENEURO.0053-21.2021.	1.9	3
4	Endothelial Semaphorin 3fb regulates Vegf pathway-mediated angiogenic sprouting. PLoS Genetics, 2021, 17, e1009769.	3.5	5
5	Distinct type II opsins in the eye decode light properties for background adaptation and behavioural background preference. Molecular Ecology, 2021, 30, 6659-6676.	3.9	7
6	Type II Opsins in the Eye, the Pineal Complex and the Skin of Xenopus laevis: Using Changes in Skin Pigmentation as a Readout of Visual and Circadian Activity. Frontiers in Neuroanatomy, 2021, 15, 784478.	1.7	1
7	The regulation of skin pigmentation in response to environmental light by pineal Type II opsins and skin melanophore melatonin receptors. Journal of Photochemistry and Photobiology B: Biology, 2020, 212, 112024.	3.8	13
8	Lhx2/9 and Etv1 Transcription Factors have Complementary roles in Regulating the Expression of Guidance Genes slit1 and sema3a. Neuroscience, 2020, 434, 66-82.	2.3	4
9	Plasticity for colour adaptation in vertebrates explained by the evolution of the genes pomc , pmch and pmchl. Pigment Cell and Melanoma Research, 2019, 32, 510-527.	3.3	13
10	The Expression of Key Guidance Genes at a Forebrain Axon Turning Point Is Maintained by Distinct Fgfr Isoforms but a Common Downstream Signal Transduction Mechanism. ENeuro, 2019, 6, ENEURO.0086-19.2019.	1.9	8
11	Fibroblast growth factor receptor 1 signaling transcriptionally regulates the axon guidance cue slit1. Cellular and Molecular Life Sciences, 2018, 75, 3649-3661.	5.4	6
12	Seeing the light to change colour: An evolutionary perspective on the role of melanopsin in neuroendocrine circuits regulating lightâ€mediated skin pigmentation. Pigment Cell and Melanoma Research, 2018, 31, 354-373.	3.3	27
13	Polarity and morphogenesis of the eye epithelium requires the adhesion junction associated adaptor protein Traf4. Cell Adhesion and Migration, 2018, 12, 1-14.	2.7	4
14	Identification of target genes downstream of semaphorin6A/PlexinA2 signaling in zebrafish. Developmental Dynamics, 2017, 246, 539-549.	1.8	12
15	Retinal pigment epithelium expansion around the neural retina occurs in two separate phases with distinct mechanisms. Developmental Dynamics, 2017, 246, 598-609.	1.8	38
16	Interaction and developmental activation of two neuroendocrine systems that regulate lightâ€mediated skin pigmentation. Pigment Cell and Melanoma Research, 2017, 30, 413-423.	3.3	10
17	Pharmacological induction of skin pigmentation unveils the neuroendocrine circuit regulated by light. Pigment Cell and Melanoma Research, 2016, 29, 186-198.	3.3	14
18	Restrictions on the Importation of Zebrafish into Canada Associated with Spring Viremia of Carp Virus. Zebrafish, 2016, 13, S-153-S-163.	1.1	13

SARAH MCFARLANE

#	Article	IF	CITATIONS
19	EGCG stabilizes growth cone filopodia and impairs retinal ganglion cell axon guidance. Developmental Dynamics, 2016, 245, 667-677.	1.8	14
20	<i>Pten</i> Regulates Retinal Amacrine Cell Number by Modulating Akt, Tgfî², and Erk Signaling. Journal of Neuroscience, 2016, 36, 9454-9471.	3.6	21
21	Two lightâ€∎ctivated neuroendocrine circuits arising in the eye trigger physiological and morphological pigmentation. Pigment Cell and Melanoma Research, 2016, 29, 688-701.	3.3	8
22	Melanopsin photoreception in the eye regulates lightâ€induced skin colour changes through the production of <i>α</i> â€ <scp>MSH</scp> in the pituitary gland. Pigment Cell and Melanoma Research, 2015, 28, 559-571.	3.3	21
23	Rho kinase is required to prevent retinal axons from entering the contralateral optic nerve. Molecular and Cellular Neurosciences, 2015, 69, 30-40.	2.2	1
24	Sema6a and Plxna2 mediate spatially regulated repulsion within the developing eye to promote eye vesicle cohesion. Development (Cambridge), 2014, 141, 2473-2482.	2.5	21
25	Wiring the retinal circuits activated by light during early development. Neural Development, 2014, 9, 3.	2.4	23
26	Neuronal expression of fibroblast growth factor receptors in zebrafish. Gene Expression Patterns, 2013, 13, 354-361.	0.8	9
27	Neuropilin-1 biases dendrite polarization in the retina. Development (Cambridge), 2013, 140, 2933-2941.	2.5	17
28	The <i>Xenopus</i> retinal ganglion cell as a model neuron to study the establishment of neuronal connectivity. Developmental Neurobiology, 2012, 72, 520-536.	3.0	14
29	Identification and expression analysis of CPAT family genes during early development of Xenopus laevis. Gene Expression Patterns, 2012, 12, 219-227.	0.8	18
30	Extrinsic factors as multifunctional regulators of retinal ganglion cell morphogenesis. Developmental Neurobiology, 2011, 71, 1170-1185.	3.0	4
31	Two promoters with distinct activities in different tissues drive the expression of heparanase in <i>Xenopus</i> . Developmental Dynamics, 2011, 240, 2657-2672.	1.8	9
32	Distinct roles for Robo2 in the regulation of axon and dendrite growth by retinal ganglion cells. Mechanisms of Development, 2010, 127, 36-48.	1.7	36
33	Dynamic Expression of Axon Guidance Cues Required for Optic Tract Development Is Controlled by Fibroblast Growth Factor Signaling. Journal of Neuroscience, 2010, 30, 685-693.	3.6	50
34	LIMK1 acts downstream of BMP signaling in developing retinal ganglion cell axons but not dendrites. Developmental Biology, 2009, 330, 273-285.	2.0	24
35	TGFβ ligands promote the initiation of retinal ganglion cell dendrites in vitro and in vivo. Molecular and Cellular Neurosciences, 2008, 37, 247-260.	2.2	36
36	Two Heparanase Splicing Variants with Distinct Properties Are Necessary in Early Xenopus Development. Journal of Biological Chemistry, 2008, 283, 16004-16016.	3.4	11

SARAH MCFARLANE

#	Article	IF	CITATIONS
37	Targeting of Retinal Axons Requires the Metalloproteinase ADAM10. Journal of Neuroscience, 2007, 27, 8448-8456.	3.6	43
38	Zac1 promotes a Müller glial cell fate and interferes with retinal ganglion cell differentiation inXenopus retina. Developmental Dynamics, 2007, 236, 192-202.	1.8	14
39	Expression of multiple class three semaphorins in the retina and along the path of zebrafish retinal axons. Developmental Dynamics, 2007, 236, 2918-2924.	1.8	22
40	Zac1 functions through TGFβII to negatively regulate cell number in the developing retina. Neural Development, 2007, 2, 11.	2.4	41
41	Expression of Bmp ligands and receptors in the developing Xenopus retina. International Journal of Developmental Biology, 2007, 51, 161-165.	0.6	22
42	Matrix metalloproteinases are required for retinal ganglion cell axon guidance at select decision points. Development (Cambridge), 2005, 132, 3371-3379.	2.5	60
43	Metalloproteases. Neuron, 2003, 37, 559-562.	8.1	96
44	Metalloproteases and Guidance of Retinal Axons in the Developing Visual System. Journal of Neuroscience, 2002, 22, 8091-8100.	3.6	63
45	GABA and development of theXenopus optic projection. Journal of Neurobiology, 2002, 51, 272-284.	3.6	16
46	Expression of voltage-dependent potassium channels in the developing visual system ofXenopus laevis. Journal of Comparative Neurology, 2002, 452, 381-391.	1.6	24
47	A Role for Voltage-Gated Potassium Channels in the Outgrowth of Retinal Axons in the Developing Visual System. Journal of Neuroscience, 2000, 20, 1020-1029.	3.6	34
48	Fibroblast growth factor receptor signaling inXenopus retinal axon extension. Journal of Neurobiology, 1998, 37, 633-641.	3.6	65
49	Inhibition of FGF Receptor Activity in Retinal Ganglion Cell Axons Causes Errors in Target Recognition. Neuron, 1996, 17, 245-254.	8.1	137
50	FGF signaling and target recognition in the developing xenopus visual system. Neuron, 1995, 15, 1017-1028.	8.1	168