Krzysztof HerbuÅ>

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2337459/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catastrophic Impact Loading Resilience of Welded Joints of High Strength Steel of Refineries' Piping Systems. Materials, 2022, 15, 1323.	1.3	0
2	Creating an Integrated Model of a Technical System with Use of the Mechatronic Features. Advances in Intelligent Systems and Computing, 2021, , 73-82.	0.5	0
3	Testing the Impact of Braking Algorithm Parameters on Acceleration and Braking Distance for a Suspended Monorail with Regard to Acceptable Travel Speed in Hard Coal Mines. Energies, 2021, 14, 7275.	1.6	6
4	Method for Tuning the Parameters of Active Force Reducing Building Vibrations—Numerical Tests. Energies, 2021, 14, 8293.	1.6	1
5	Use of active synthesis in vibration reduction using an example of a four-storey building. JVC/Journal of Vibration and Control, 2020, 26, 1471-1483.	1.5	4
6	Virtual prototyping of the suspended monorail in the aspect of increasing the permissible travel speed in hard coal mines. Eksploatacja I Niezawodnosc, 2020, 22, 610-619.	1.1	9
7	Control of Selected Operational Parameters of the Scraper Conveyor to Improve Its Working Conditions. Advances in Intelligent Systems and Computing, 2019, , 395-405.	0.5	2
8	Virtual Activating of a Robotized Production Cell with Use of the Mechatronics Concept Designer Module of the PLM Siemens NX System. Advances in Intelligent Systems and Computing, 2019, , 417-425.	0.5	1
9	Development and analysis of a new technology of freight cars modernization. Journal of Vibroengineering, 2018, 20, 2978-2997.	0.5	4
10	Dynamic analysis of scraper conveyor operation with external loads. MATEC Web of Conferences, 2017, 94, 01009.	0.1	3
11	Analysis of impact of longitudinal inclination of a chain conveyor on dynamical phenomena during operation. MATEC Web of Conferences, 2017, 94, 01010.	0.1	6
12	A study of an influence of a fiber arrangement of a laminate ply on the distribution and values of stresses in the multi-layered composite material. MATEC Web of Conferences, 2017, 112, 04022.	0.1	4
13	An investigation of the influence of a fiber arrangement of a laminate on the values of stresses in the composite panel of a modified freight wagon using the FEM method. MATEC Web of Conferences, 2017, 112, 04015.	0.1	2
14	Compression studies of multi-layered composite materials for the purpose of verifying composite panels model used in the renovation process of the freight wagon's hull. Eksploatacja I Niezawodnosc, 2017, 20, 137-146.	1.1	6
15	Application of Programs of the CAD/CAE Class for Creating the Virtual Laboratory Stand. Applied Mechanics and Materials, 2015, 809-810, 841-846.	0.2	2
16	Mapping of the Characteristics of a Drive Functioning in the System of CAD Class Using the Integration of a Virtual Controller with a Virtual Model of a Drive. Applied Mechanics and Materials, 2015, 809-810, 1249-1254.	0.2	6
17	Application of the Method Based on Knowledge and Experience for Adding the Cutting Tools and Parameters Selection. Applied Mechanics and Materials, 2015, 809-810, 1243-1248.	0.2	5
18	Examination of a Cargo Space of a Freight Wagon Modified with Composite Panels. Applied Mechanics and Materials, 2015, 809-810, 944-949.	0.2	4

KRZYSZTOF HERBUÅ>

#	Article	IF	CITATIONS
19	Analysis of the Dynamic Properties of the Mechatronic Integrator of Control Procedures of the Vehicle Driven by Persons with Disabilities. Solid State Phenomena, 2015, 220-221, 3-8.	0.3	13
20	Simulator of the Car for Driving Courses for the People with Mobility Impairments. Advanced Materials Research, 2014, 1036, 817-822.	0.3	16
21	Simulation of the Stewart Platform Carried out Using the Siemens NX and NI LabVIEW Programs. Advanced Materials Research, 2013, 837, 537-542.	0.3	24
22	Geometric Analysis of Motions Exercised by the Stewart Platform. Advanced Materials Research, 0, 837, 351-356.	0.3	28
23	The Simulator for Teaching how to Drive a Car for People with Disabilities. Solid State Phenomena, 0, 198, 59-64.	0.3	24
24	Integration of a Virtual 3D Model of a Robot Manipulator with its Tangible Model (Phantom). Advanced Materials Research, 0, 837, 582-587.	0.3	24
25	Conception of the Integration of the Virtual Robot Model with the Control System. Advanced Materials Research, 0, 1036, 732-736.	0.3	22
26	Application of the CBR Method for Adding the Design Process of Module Manipulators. Advanced Materials Research, 0, 1036, 1011-1016.	0.3	16
27	Application of the Method Basing on Engineering Knowledge and Experience for Adding the Hexapod Design Process. Advanced Materials Research, 0, 1036, 1005-1010.	0.3	17
28	Application of Functional Features to the Description of Technical Means Conception. Advanced Materials Research, 0, 1036, 1001-1004.	0.3	23
29	Motion Analysis of Mechatronic Equipment Considering the Example of the Stewart Platform. Solid State Phenomena, 0, 220-221, 479-484.	0.3	30
30	Designing Mechatronics Equipment Based on the Example of the Stewart Platform. Solid State Phenomena, 0, 220-221, 419-422.	0.3	16