Malcolm A Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2337458/publications.pdf

Version: 2024-02-01

158 20,034 61 136
papers citations h-index g-index

166 166 21280 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Anti-GD2 Antibody with GM-CSF, Interleukin-2, and Isotretinoin for Neuroblastoma. New England Journal of Medicine, 2010, 363, 1324-1334.	13.9	1,460
2	Deletion of <i>IKZF1 </i> and Prognosis in Acute Lymphoblastic Leukemia. New England Journal of Medicine, 2009, 360, 470-480.	13.9	1,260
3	Targetable Kinase-Activating Lesions in Ph-like Acute Lymphoblastic Leukemia. New England Journal of Medicine, 2014, 371, 1005-1015.	13.9	1,161
4	The genetic landscape of high-risk neuroblastoma. Nature Genetics, 2013, 45, 279-284.	9.4	990
5	Outcomes for Children and Adolescents With Cancer: Challenges for the Twenty-First Century. Journal of Clinical Oncology, 2010, 28, 2625-2634.	0.8	850
6	The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nature Genetics, 2017, 49, 1211-1218.	9.4	693
7	Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature, 2018, 555, 371-376.	13.7	649
8	Genetic Alterations Activating Kinase and Cytokine Receptor Signaling in High-Risk Acute Lymphoblastic Leukemia. Cancer Cell, 2012, 22, 153-166.	7.7	621
9	The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nature Medicine, 2018, 24, 103-112.	15.2	525
10	JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9414-9418.	3.3	516
11	Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood, 2010, 115, 5312-5321.	0.6	503
12	Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nature Genetics, 2015, 47, 864-871.	9.4	451
13	The pediatric preclinical testing program: Description of models and early testing results. Pediatric Blood and Cancer, 2007, 49, 928-940.	0.8	430
14	Declining childhood and adolescent cancer mortality. Cancer, 2014, 120, 2497-2506.	2.0	410
15	Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood, 2010, 116, 4874-4884.	0.6	370
16	Selumetinib in Children with Inoperable Plexiform Neurofibromas. New England Journal of Medicine, 2020, 382, 1430-1442.	13.9	360
17	Design Issues of Randomized Phase II Trials and a Proposal for Phase II Screening Trials. Journal of Clinical Oncology, 2005, 23, 7199-7206.	0.8	352
18	Secondary Leukemia or Myelodysplastic Syndrome After Treatment With Epipodophyllotoxins. Journal of Clinical Oncology, 1999, 17, 569-569.	0.8	282

#	Article	IF	CITATIONS
19	Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nature Communications, 2015, 6, 6604.	5.8	281
20	Trends in Reported Incidence of Primary Malignant Brain Tumors in Children in the United States. Journal of the National Cancer Institute, 1998, 90, 1269-1277.	3.0	269
21	Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood, 2011, 118, 3080-3087.	0.6	255
22	A Children's Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nature Genetics, 2017, 49, 1487-1494.	9.4	255
23	Recurrent DGCR8, DROSHA, and SIX Homeodomain Mutations in Favorable Histology Wilms Tumors. Cancer Cell, 2015, 27, 286-297.	7.7	244
24	The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature, 2018, 562, 373-379.	13.7	236
25	A Menin-MLL Inhibitor Induces Specific Chromatin Changes and Eradicates Disease in Models of MLL-Rearranged Leukemia. Cancer Cell, 2019, 36, 660-673.e11.	7.7	231
26	Initial testing of the aurora kinase a inhibitor MLN8237 by the Pediatric Preclinical Testing Program (PPTP). Pediatric Blood and Cancer, 2010, 55, 26-34.	0.8	195
27	Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood, 2010, 115, 1394-1405.	0.6	192
28	Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGFâ€1 receptor by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2008, 50, 1190-1197.	0.8	168
29	Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2008, 50, 799-805.	0.8	162
30	Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project. Blood, 2013, 121, 485-488.	0.6	156
31	Venetoclax responses of pediatric ALL xenografts reveal sensitivity of MLL-rearranged leukemia. Blood, 2016, 128, 1382-1395.	0.6	148
32	Genomic Profiling of Pediatric Acute Myeloid Leukemia Reveals a Changing Mutational Landscape from Disease Diagnosis to Relapse. Cancer Research, 2016, 76, 2197-2205.	0.4	133
33	Toward a Drug Development Path That Targets Metastatic Progression in Osteosarcoma. Clinical Cancer Research, 2014, 20, 4200-4209.	3.2	127
34	Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2008, 50, 581-587.	0.8	116
35	Molecular Characterization of the Pediatric Preclinical Testing Panel. Clinical Cancer Research, 2008, 14, 4572-4583.	3.2	116
36	Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2008, 50, 37-45.	0.8	112

#	Article	IF	CITATIONS
37	Initial testing (stage 1) of the BH3 mimetic ABTâ€263 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2008, 50, 1181-1189.	0.8	108
38	Credentialing Preclinical Pediatric Xenograft Models Using Gene Expression and Tissue Microarray Analysis. Cancer Research, 2007, 67, 32-40.	0.4	105
39	Genomic Profiling of Childhood Tumor Patient-Derived Xenograft Models to Enable Rational Clinical Trial Design. Cell Reports, 2019, 29, 1675-1689.e9.	2.9	103
40	Synergistic Activity of PARP Inhibition by Talazoparib (BMN 673) with Temozolomide in Pediatric Cancer Models in the Pediatric Preclinical Testing Program. Clinical Cancer Research, 2015, 21, 819-832.	3.2	100
41	Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours. Nature Reviews Cancer, 2019, 19, 420-438.	12.8	98
42	New policies to address the global burden of childhood cancers. Lancet Oncology, The, 2013, 14, e125-e135.	5.1	96
43	Long-Term Follow-up of a Phase III Study of ch14.18 (Dinutuximab) + Cytokine Immunotherapy in Children with High-Risk Neuroblastoma: COG Study ANBL0032. Clinical Cancer Research, 2021, 27, 2179-2189.	3.2	95
44	Initial testing (stage 1) of AZD6244 (ARRYâ€142886) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2010, 55, 668-677.	0.8	94
45	Initial testing of a monoclonal antibody (IMCâ€A12) against IGFâ€1R by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2010, 54, 921-926.	0.8	89
46	Stage 2 Combination Testing of Rapamycin with Cytotoxic Agents by the Pediatric Preclinical Testing Program. Molecular Cancer Therapeutics, 2010, 9, 101-112.	1.9	89
47	Initial testing (stage 1) of sunitinib by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2008, 51, 42-48.	0.8	88
48	Efficacy and pharmacokinetic/pharmacodynamic evaluation of the Aurora kinase A inhibitor MLN8237 against preclinical models of pediatric cancer. Cancer Chemotherapy and Pharmacology, 2011, 68, 1291-1304.	1.1	88
49	Initial testing (stage 1) of tazemetostat (EPZâ€6438), a novel EZH2 inhibitor, by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2017, 64, e26218.	0.8	86
50	Significance of <i>TP53</i> Mutation in Wilms Tumors with Diffuse Anaplasia: A Report from the Children's Oncology Group. Clinical Cancer Research, 2016, 22, 5582-5591.	3.2	82
51	National Cancer Institute pediatric preclinical testing program: Model description for in vitro cytotoxicity testing. Pediatric Blood and Cancer, 2011, 56, 239-249.	0.8	77
52	Initial testing (stage 1) of eribulin, a novel tubulin binding agent, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2013, 60, 1325-1332.	0.8	77
53	Initial testing (stage 1) of LCL161, a SMAC mimetic, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 58, 636-639.	0.8	73
54	Initial testing of dasatinib by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2008, 50, 1198-1206.	0.8	69

#	Article	IF	Citations
55	Genetic mechanisms of primary chemotherapy resistance in pediatric acute myeloid leukemia. Leukemia, 2019, 33, 1934-1943.	3.3	69
56	Cell and Molecular Determinants of <i>In Vivo</i> Efficacy of the BH3 Mimetic ABT-263 against Pediatric Acute Lymphoblastic Leukemia Xenografts. Clinical Cancer Research, 2014, 20, 4520-4531.	3.2	67
57	The Anti-CD19 Antibody–Drug Conjugate SAR3419 Prevents Hematolymphoid Relapse Postinduction Therapy in Preclinical Models of Pediatric Acute Lymphoblastic Leukemia. Clinical Cancer Research, 2013, 19, 1795-1805.	3.2	66
58	A Comprehensive Safety Trial of Chimeric Antibody 14.18 With GM-CSF, IL-2, and Isotretinoin in High-Risk Neuroblastoma Patients Following Myeloablative Therapy: Children's Oncology Group Study ANBL0931. Frontiers in Immunology, 2018, 9, 1355.	2.2	66
59	Acute myeloid leukemia in patients treated for rhabdomyosarcoma with cyclophosphamide and low-dose etoposide on intergroup rhabdomyosarcoma study III: An interim report. Medical and Pediatric Oncology, 1994, 23, 99-106.	1.0	65
60	Initial testing (stage 1) of the PARP inhibitor BMN 673 by the pediatric preclinical testing program: <i>PALB2</i> mutation predicts exceptional <i>in vivo</i> response to BMN 673. Pediatric Blood and Cancer, 2015, 62, 91-98.	0.8	65
61	Development and Validation Of a Highly Sensitive and Specific Gene Expression Classifier To Prospectively Screen and Identify B-Precursor Acute Lymphoblastic Leukemia (ALL) Patients With a Philadelphia Chromosome-Like (â€∞Ph-like―or â€∞BCR-ABL1-Likeâ€) Signature For Therapeutic Targeting and Clinical Intervention, Blood, 2013, 122, 826-826.	0.6	65
62	MLLT1 YEATS domain mutations in clinically distinctive Favourable Histology Wilms tumours. Nature Communications, 2015, 6, 10013.	5.8	64
63	A Phase II Study of Alisertib in Children with Recurrent/Refractory Solid Tumors or Leukemia: Children's Oncology Group Phase I and Pilot Consortium (ADVL0921). Clinical Cancer Research, 2019, 25, 3229-3238.	3.2	61
64	A Proposal Regarding Reporting of <i>In Vitro</i> Testing Results. Clinical Cancer Research, 2013, 19, 2828-2833.	3.2	59
65	Broad Spectrum Activity of the Checkpoint Kinase 1 Inhibitor Prexasertib as a Single Agent or Chemopotentiator Across a Range of Preclinical Pediatric Tumor Models. Clinical Cancer Research, 2019, 25, 2278-2289.	3.2	57
66	Identification of Mithramycin Analogues with Improved Targeting of the EWS-FLI1 Transcription Factor. Clinical Cancer Research, 2016, 22, 4105-4118.	3.2	56
67	Initial testing of the MDM2 inhibitor RG7112 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2013, 60, 633-641.	0.8	55
68	The B7-H3–Targeting Antibody–Drug Conjugate m276-SL-PBD Is Potently Effective Against Pediatric Cancer Preclinical Solid Tumor Models. Clinical Cancer Research, 2021, 27, 2938-2946.	3.2	55
69	Initial testing (stage 1) of vorinostat (SAHA) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2009, 53, 505-508.	0.8	54
70	Evaluation of Alternative <i>In Vivo</i> Drug Screening Methodology: A Single Mouse Analysis. Cancer Research, 2016, 76, 5798-5809.	0.4	52
71	ACCELERATE and European Medicines Agency Paediatric Strategy Forum for medicinal product development of checkpoint inhibitors for use in combination therapy in paediatric patients. European Journal of Cancer, 2020, 127, 52-66.	1.3	52
72	Initial testing (stage 1) of the multi-targeted kinase inhibitor sorafenib by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2010, 55, 1126-1133.	0.8	51

#	Article	IF	Citations
73	AKR1C3 is a biomarker of sensitivity to PR-104 in preclinical models of T-cell acute lymphoblastic leukemia. Blood, 2015, 126, 1193-1202.	0.6	50
74	Evaluation of the <i>In Vitro</i> and <i>In Vivo</i> Efficacy of the JAK Inhibitor AZD1480 against JAK-Mutated Acute Lymphoblastic Leukemia. Molecular Cancer Therapeutics, 2015, 14, 364-374.	1.9	49
75	CSF3R mutations have a high degree of overlap with CEBPA mutations in pediatric AML. Blood, 2016, 127, 3094-3098.	0.6	49
76	MicroRNA Expression-Based Model Indicates Event-Free Survival in Pediatric Acute Myeloid Leukemia. Journal of Clinical Oncology, 2017, 35, 3964-3977.	0.8	49
77	A review of new agents evaluated against pediatric acute lymphoblastic leukemia by the Pediatric Preclinical Testing Program. Leukemia, 2016, 30, 2133-2141.	3.3	47
78	Initial testing (stage 1) of the poloâ€like kinase inhibitor volasertib (BI 6727), by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2014, 61, 158-164.	0.8	46
79	MYCN controls an alternative RNA splicing program in high-risk metastatic neuroblastoma. Cancer Letters, 2016, 371, 214-224.	3.2	46
80	TCF21 hypermethylation in genetically quiescent clear cell sarcoma of the kidney. Oncotarget, 2015, 6, 15828-15841.	0.8	46
81	Initial testing (stage 1) of the Akt inhibitor GSK690693 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2010, 55, 1329-1337.	0.8	43
82	Effective Targeting of the P53–MDM2 Axis in Preclinical Models of Infant <i>MLL</i> Lymphoblastic Leukemia. Clinical Cancer Research, 2015, 21, 1395-1405.	3.2	43
83	Synergism of FAK and tyrosine kinase inhibition in Ph+ B-ALL. JCI Insight, 2016, 1, .	2.3	41
84	Current state of pediatric sarcoma biology and opportunities for future discovery: A report from the sarcoma translational research workshop. Cancer Genetics, 2016, 209, 182-194.	0.2	38
85	Initial testing of topotecan by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2010, 54, 707-715.	0.8	37
86	Initial testing (stage 1) of the histone deacetylase inhibitor, quisinostat (JNJ-26481585), by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2014, 61, 245-252.	0.8	37
87	Testing of the Akt/PKB inhibitor MKâ€2206 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 59, 518-524.	0.8	36
88	Initial testing (stage 1) of the mTOR kinase inhibitor AZD8055 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 58, 191-199.	0.8	35
89	Initial testing (stage 1) of glembatumumab vedotin (CDX-011) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2014, 61, 1816-1821.	0.8	35
90	Second Paediatric Strategy Forum for anaplastic lymphoma kinase (ALK) inhibition in paediatric malignancies. European Journal of Cancer, 2021, 157, 198-213.	1.3	34

#	Article	IF	Citations
91	Initial testing of the multitargeted kinase inhibitor pazopanib by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 59, 586-588.	0.8	33
92	Stage 1 testing and pharmacodynamic evaluation of the HSP90 inhibitor alvespimycin (17â€DMAG,) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
93	Initial testing of the hypoxiaâ€activated prodrug PRâ€104 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2011, 57, 443-453.	0.8	31
94	Initial testing (stage 1) by the pediatric preclinical testing program of RO4929097, a γâ€secretase inhibitor targeting notch signaling. Pediatric Blood and Cancer, 2012, 58, 815-818.	0.8	31
95	Initial testing of cisplatin by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2008, 50, 992-1000.	0.8	30
96	OBI-3424, a Novel AKR1C3-Activated Prodrug, Exhibits Potent Efficacy against Preclinical Models of T-ALL. Clinical Cancer Research, 2019, 25, 4493-4503.	3.2	30
97	Initial testing (stage 1) of the tubulin binding agent nanoparticle albuminâ€bound (⟨i⟩nab⟨/i⟩) paclitaxel (Abraxane⟨sup⟩®⟨/sup⟩) by the Pediatric Preclinical Testing Program (PPTP). Pediatric Blood and Cancer, 2015, 62, 1214-1221.	0.8	29
98	Initial testing (stage 1) of lapatinib by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2009, 53, 594-598.	0.8	28
99	Pharmacodynamic and genomic markers associated with response to the XPO1/CRM1 inhibitor selinexor (KPTâ€330): A report from the pediatric preclinical testing program. Pediatric Blood and Cancer, 2016, 63, 276-286.	0.8	28
100	Initial testing (Stage 1) of the antibody-maytansinoid conjugate, IMGN901 (Lorvotuzumab mertansine), by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2013, 60, 1860-1867.	0.8	27
101	Intrinsic Resistance to Cixutumumab Is Conferred by Distinct Isoforms of the Insulin Receptor. Molecular Cancer Research, 2015, 13, 1615-1626.	1.5	27
102	Remaining Challenges in Childhood Cancer and Newer Targeted Therapeutics. Pediatric Clinics of North America, 2015, 62, 301-312.	0.9	27
103	Initial Testing (Stage 1) of MKâ€8242—A Novel MDM2 Inhibitor—by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2016, 63, 1744-1752.	0.8	27
104	Combination testing of cediranib (AZD2171) against childhood cancer models by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 58, 566-571.	0.8	26
105	Erwinia asparaginase in pediatric acute lymphoblastic leukemia. Expert Opinion on Biological Therapy, 2012, 12, 1407-1414.	1.4	24
106	Comparative pharmacokinetics, safety, and tolerability of two sources of ch14.18 in pediatric patients with high-risk neuroblastoma following myeloablative therapy. Cancer Chemotherapy and Pharmacology, 2016, 77, 405-412.	1.1	24
107	Initial testing of JNJâ€26854165 (Serdemetan) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 59, 329-332.	0.8	22
108	Initial testing (stage 1) of M6620 (formerly VXâ€970), a novel ATR inhibitor, alone and combined with cisplatin and melphalan, by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2018, 65, e26825.	0.8	21

#	Article	IF	CITATIONS
109	Efficacy of CPXâ€351, (cytarabine:daunorubicin) liposome injection, against acute lymphoblastic leukemia (ALL) xenograft models of the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2015, 62, 65-71.	0.8	20
110	Acute Sensitivity of Ph-like Acute Lymphoblastic Leukemia to the SMAC-Mimetic Birinapant. Cancer Research, 2016, 76, 4579-4591.	0.4	20
111	Initial testing of VS-4718, a novel inhibitor of focal adhesion kinase (FAK), against pediatric tumor models by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2017, 64, e26304.	0.8	20
112	Effective targeting of NAMPT in patient-derived xenograft models of high-risk pediatric acute lymphoblastic leukemia. Leukemia, 2020, 34, 1524-1539.	3.3	20
113	Paediatric Strategy Forum for medicinal product development of epigenetic modifiers for children. European Journal of Cancer, 2020, 139, 135-148.	1.3	20
114	Somatic structural variation targets neurodevelopmental genes and identifies <i>SHANK2</i> as a tumor suppressor in neuroblastoma. Genome Research, 2020, 30, 1228-1242.	2.4	20
115	Initial testing (stage 1) of the phosphatidylinositol $3\hat{a}\in^2$ kinase inhibitor, SAR245408 (XL147) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2013, 60, 791-798.	0.8	19
116	Initial testing (stage 1) of the investigational mTOR kinase inhibitor MLN0128 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2014, 61, 1486-1489.	0.8	19
117	Preclinical activity of the antibodyâ€drug conjugate denintuzumab mafodotin (SGN D19A) against pediatric acute lymphoblastic leukemia xenografts. Pediatric Blood and Cancer, 2019, 66, e27765.	0.8	19
118	Discovery and Functional Validation of Novel Pediatric Specific FLT3 Activating Mutations in Acute Myeloid Leukemia: Results from the COG/NCI Target Initiative. Blood, 2015, 126, 87-87.	0.6	19
119	ADVL1522: A phase 2 study of lorvotuzumab mertansine (IMGN901) in children with relapsed or refractory wilms tumor, rhabdomyosarcoma, neuroblastoma, pleuropulmonary blastoma, malignant peripheral nerve sheath tumor, or synovial sarcomaâ€"A Children's Oncology Group study. Cancer, 2020, 126, 5303-5310.	2.0	17
120	ABBV-085, Antibody–Drug Conjugate Targeting LRRC15, Is Effective in Osteosarcoma: A Report by the Pediatric Preclinical Testing Consortium. Molecular Cancer Therapeutics, 2021, 20, 535-540.	1.9	17
121	Testing of the topoisomerase 1 inhibitor Genzâ€644282 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 58, 200-209.	0.8	16
122	Quantitative Phosphotyrosine Profiling of Patient-Derived Xenografts Identifies Therapeutic Targets in Pediatric Leukemia. Cancer Research, 2016, 76, 2766-2777.	0.4	16
123	Bioluminescence Imaging Enhances Analysis of Drug Responses in a Patient-Derived Xenograft Model of Pediatric ALL. Clinical Cancer Research, 2017, 23, 3744-3755.	3.2	16
124	Initial testing (stage 1) of the curaxin CBL0137 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2017, 64, e26263.	0.8	15
125	Initial testing (Stage 1) of AT13387, an HSP90 inhibitor, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 59, 185-188.	0.8	14
126	Initial testing (stage 1) of the antiâ€microtubule agents cabazitaxel and docetaxel, by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2015, 62, 1897-1905.	0.8	14

#	Article	IF	CITATIONS
127	International Consensus on Minimum Preclinical Testing Requirements for the Development of Innovative Therapies For Children and Adolescents with Cancer. Molecular Cancer Therapeutics, 2021, 20, 1462-1468.	1.9	14
128	In vivo evaluation of the lysineâ€specific demethylase (KDM1A/LSD1) inhibitor SPâ€2577 (Seclidemstat) against pediatric sarcoma preclinical models: A report from the Pediatric Preclinical Testing Consortium (PPTC). Pediatric Blood and Cancer, 2021, 68, e29304.	0.8	14
129	Selumetinib in children with neurofibromatosis type 1 and asymptomatic inoperable plexiform neurofibroma at risk for developing tumor-related morbidity. Neuro-Oncology, 2022, 24, 1978-1988.	0.6	14
130	Initial testing (stage 1) of temozolomide by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2013, 60, 783-790.	0.8	13
131	Comprehensive Surfaceome Profiling to Identify and Validate Novel Cell-Surface Targets in Osteosarcoma. Molecular Cancer Therapeutics, 2022, 21, 903-913.	1.9	12
132	Initial testing (stage 1) of ganetespib, an Hsp90 inhibitor, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2013, 60, E42-5.	0.8	11
133	Evaluation of Eribulin Combined with Irinotecan for Treatment of Pediatric Cancer Xenografts. Clinical Cancer Research, 2020, 26, 3012-3023.	3.2	11
134	Outcomes Following GD2-Directed Postconsolidation Therapy for Neuroblastoma After Cessation of Random Assignment on ANBL0032: A Report From the Children's Oncology Group. Journal of Clinical Oncology, 2022, 40, 4107-4118.	0.8	11
135	Initial testing of aplidin by the pediatric preâ€clinical testing program. Pediatric Blood and Cancer, 2009, 53, 509-512.	0.8	10
136	Bromodomain and extra-terminalÂinhibitors—A consensus prioritisation after the Paediatric Strategy Forum for medicinal product development of epigenetic modifiers in children—ACCELERATE. European Journal of Cancer, 2021, 146, 115-124.	1.3	10
137	Evaluation of cytarabine against Ewing sarcoma xenografts by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2010, 55, 1224-1226.	0.8	9
138	Lessons learned from adult clinical experience to inform evaluations of VEGF pathway inhibitors in children with cancer. Pediatric Blood and Cancer, 2014, 61, 1497-1505.	0.8	9
139	Initial testing (stage 1) of BAL101553, a novel tubulin binding agent, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2015, 62, 1106-1109.	0.8	9
140	In vivo evaluation of the EZH2 inhibitor (EPZ011989) alone or in combination with standard of care cytotoxic agents against pediatric malignant rhabdoid tumor preclinical modelsâ€"A report from the Pediatric Preclinical Testing Consortium. Pediatric Blood and Cancer, 2021, 68, e28772.	0.8	9
141	Evaluation of an EZH2 inhibitor in patient-derived orthotopic xenograft models of pediatric brain tumors alone and in combination with chemo- and radiation therapies. Laboratory Investigation, 2022, 102, 185-193.	1.7	8
142	Initial testing of VNP40101M (Cloretazine \hat{A}^{\otimes}) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2008, 51, 439-441.	0.8	7
143	Initial solid tumor testing (Stage 1) of AZD1480, an inhibitor of Janus kinases 1 and 2 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2014, 61, 1972-1979.	0.8	7
144	Initial testing (stage 1) of the topoisomerase II inhibitor pixantrone, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2014, 61, 922-924.	0.8	6

#	Article	IF	CITATIONS
145	Initial testing (stage 1) of the notch inhibitor PFâ€03084014, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2014, 61, 1493-1496.	0.8	6
146	Workgroup #4: Clinical research implications. Cancer, 1993, 71, 2423-2423.	2.0	5
147	Initial testing (Stage 1) of TAK-701, a humanized hepatocyte growth factor binding antibody, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2014, 61, 380-382.	0.8	5
148	Will my child do better if she enrolls in a clinical trial?. Cancer, 2018, 124, 3965-3968.	2.0	3
149	Abstract 926: Whole genome and transcriptome sequencing defines the spectrum of somatic changes in high-risk neuroblastoma. Cancer Research, 2011, 71, 926-926.	0.4	3
150	Evaluation of the contribution of randomised cancer clinical trials evaluating agents without documented single-agent activity. ESMO Open, 2020, 5, e000871.	2.0	2
151	Abstract 4756: Exome sequencing of 81 neuroblastomas identifies a wide diversity of somatic mutation. Cancer Research, 2011, 71, 4756-4756.	0.4	2
152	Comprehensive Sequence Analysis of Relapse and Refractory Pediatric Acute Myeloid Leukemia Identifies miRNA and mRNA Transcripts Associated with Treatment Resistance - a Report from the COG/NCI-Target AML Initiative. Blood, 2015, 126, 687-687.	0.6	2
153	A phase I clinical trial of veliparib and temozolomide in children with recurrent central nervous system tumors: A Pediatric Brain Tumor Consortium report Journal of Clinical Oncology, 2013, 31, 2036-2036.	0.8	2
154	Sorafenib Inhibits ABCG2 and Overcomes Irinotecan Resistanceâ€"Letter. Molecular Cancer Therapeutics, 2014, 13, 763-763.	1.9	1
155	Abstract LB-321: Re-evaluating sample sizes in preclinical testing of patient-derived xenografts. , 2019, , .		1
156	Evaluation of the DLL3-targeting Antibody–Drug Conjugate Rovalpituzumab Tesirine in Preclinical Models of Neuroblastoma. Cancer Research Communications, 2022, 2, 616-623.	0.7	1
157	Initial Testing of NSC 750854, a Novel Purine Analog, Against Pediatric Tumor Models by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2016, 63, 443-450.	0.8	0
158	Genomic Profiling of Childhood Tumor Patient-Derived Xenograft Models to Enable Rational Clinical Trial Design. SSRN Electronic Journal, 0, , .	0.4	0